

ROBERT W. KASTENMEIER LECTURE

SOFTWARE PATENTS AND THE RETURN OF
FUNCTIONAL CLAIMING*

MARK A. LEMLEY**

The Robert W. Kastenmeier Lecture
University of Wisconsin Law School

October 12, 2012

 Commentators have observed for years that patents do less good and
cause more harm in the software industry than in other industries such as
pharmaceuticals. They have pointed to a variety of problems and offered a
variety of solutions.
 While there is some truth to each of these criticisms, the real problem
with software patents lies elsewhere. Software patent lawyers are
increasingly writing patent claims in broad functional terms. Put another way,
patentees claim to own not a particular machine, or even a particular series of
steps for achieving a goal, but the goal itself. The resulting overbroad
patents overlap and create patent thickets.
 Patent law has faced this problem before. The Supreme Court
ultimately rejected such broad functional claiming in the 1940s as
inconsistent with the purposes of the patent statute. When Congress rewrote
the Patent Act in 1952, it adopted a compromise position: patentees could
write their claim language in functional terms, but when they did so the
patent would not cover the goal itself, but only the particular means of
implementing that goal described by the patentee and equivalents thereof.
These “means-plus-function” claims permitted the patentee to use functional
language to describe an element of their invention, but did not permit her to
own the function itself however implemented.
 Most software patents today are written in functional terms. If courts
would faithfully apply the 1952 Act, limiting those claims to the actual
algorithms the patentees disclosed and their equivalents, they could prevent

 * © 2013 Mark A. Lemley.
 ** William H. Neukom Professor, Stanford Law School; partner, Durie Tangri
LLP. Thanks to John Allison, Michael Barclay, Neel Chatterjee, Ray Chen, Colleen
Chien, Robin Feldman, Rose Hagan, Tim Holbrook, Bryant Lee, Stephen McJohn, Joe
Miller, David O’Brien, Lisa Larrimore Ouellette, Lawrence Pfeffer, Sasha Rao, Ed
Reines, Michael Risch, Robert Sachs, Julie Samuels, Dave Schwartz, Kirk Stark,
Shashank Upadhye, Lee van Pelt, Allen Wan, Kip Werking, David Wille, and
participants at the Internet Law Works in Progress conference at Santa Clara University
Law School and workshops at the Advanced Patent Law Institute, the AIPLA Computer
and Patent Law Summit, the US Patent and Trademark Office, UCLA Law School, and
the University of Wisconsin School of Law for helpful discussions and comments on an
earlier draft.

906 WISCONSIN LAW REVIEW

overclaiming by software patentees and solve much of the patent thicket
problem that besets software innovation.

Introduction ... 906
I. The History of Functional Claiming .. 910
II. The New Functional Claiming ... 919
III. Functional Claims and the Trouble with Software Patents 928

A. The Problem with Software Patents 928
B. Proposals to Reform Software Patents................................... 936

1. Abolishing Software Patents ... 936
2. Weeding Out Bad Patents ... 938
3. Defining the Scope of Software Patents 940
4. An Independent Invention Defense 942

IV. Functional Claiming and the Software Patent Thicket.................... 943
A. Taking Section 112(f) Seriously .. 943
B. Objections .. 949

1. Will It Work? .. 949
2. Do Inventors Deserve to Own Functions? 954

a. Hardware Doesn’t Matter .. 954
b. Point of Novelty .. 958
c. Software Inherently Functions 959
d. The Function Is the Invention 961

3. Limiting Software Patents in Order to Save Them 962
Conclusion... 964

INTRODUCTION

Commentators have observed for years that patents do less good and
cause more harm in the software industry than in other industries such as
pharmaceuticals.1 Software patents create “thickets” of overlapping
inventions, and are asserted in droves by patent “trolls” against
innovative companies. Some have argued that software isn’t the sort of
thing that should qualify as an invention at all.2 Others have pointed to
the laxity of the Patent and Trademark Office (PTO), which they say has
allowed too many patents on obvious software inventions.3 Still others
say that the problem is the absence of clear boundaries, so that it is
impossible to know whether a patent claim covers a particular product
without going to court to get a ruling on what the patent means.4

 1. See infra Part III.A.
 2. See infra notes 96, 100–02, 131 and accompanying text.
 3. See infra notes 136–38 and accompanying text.
 4. See infra notes 98–102, 142–46 and accompanying text.

2013:905 Functional Claiming 907

While there is some truth to each of these criticisms, the real
problem with software patents lies elsewhere. Patent law purports to
promote innovation by giving inventors the exclusive right to their
inventions. In fact, however, modern patent law pays far less attention to
what the patentee actually invented than to the patent “claims”—the legal
definition of the scope of the patent drafted by lawyers.5 And lawyers
have a natural tendency to broaden those claims as much as possible in
order to secure the strongest possible rights for their clients. The result,
particularly in the software and Internet industries, has been a
proliferation of patents with extremely broad claims, purporting to own
everything from international electronic commerce to video-on-demand
to emoticons to means of hedging commodity risk.6

Patent law has faced this problem before. Seventy-five years ago, in
the wake of the law’s move away from a focus on what the patentee
actually built towards what the lawyers defined as the boundaries of the
invention, patent lawyers were increasingly writing patent claims in
broad functional terms.7 Put another way, patentees were claiming to
own not a particular machine, or even a particular series of steps for
achieving a goal, but the goal itself. The Supreme Court ultimately
rejected such broad functional claiming in the 1940s as inconsistent with
the purposes of the patent statute.8 When Congress rewrote the Patent
Act in 1952, it adopted a compromise position: patentees could write
their claim language in functional terms, but when they did so the patent
would not cover the goal itself, but only the particular means of
implementing that goal described by the patentee and equivalents
thereof.9 These “means-plus-function” claims permitted the patentee to
use functional language to describe an element of her invention but did
not permit her to own the function itself, however implemented.10

Functional claiming is back. While experienced patent lawyers
today generally avoid writing their patent claims in means-plus-function
format, software patentees have increasingly been claiming to own the
function of their program, not merely the particular way they achieved
that goal.11 Both because of the nature of computer programming and

 5. Giles S. Rich, The Extent of the Protection and Interpretation of
Claims – American Perspectives, 21 INT’L REV. INDUS. PROP. & COPYRIGHT L. 497, 499
(1990) (“[T]he name of the game is the claim.”).
 6. See infra Part II.
 7. See infra notes 39–44 and accompanying text.
 8. See Halliburton Oil Well Cementing Co. v. Walker, 329 U.S. 1 (1946).

 9. 35 U.S.C. § 112(f) (2012). For patent geeks, this is what was 35 U.S.C.
§ 112 ¶ 6 until September 2011.
 10. See infra notes 49–55 and accompanying text.
 11. See infra notes 85–91.

908 WISCONSIN LAW REVIEW

because of the way the means-plus-function claim rules have been
interpreted by the Federal Circuit, those patentees have been able to write
those broad functional claims without being subject to the limitations of
Section 112(f). They have effectively captured ownership not of what
they built, but of anything that achieves the same goal, no matter how
different it is. They claim to own the function itself.

It is broad functional claiming of software inventions that is
arguably responsible for most of the well-recognized problems with
software patents. Writing software can surely be an inventive act, and not
all new programs or programming techniques are obvious to outside
observers. So some software inventions surely qualify for patent
protection. Even if there are too many software patents, the patent thicket
and patent troll problems won’t go away if we simply reduce the number
of software patents somewhat. And while the lack of clear boundaries is
a very real problem, the most important problem a product-making
software company faces today is not suits over claims with unclear
boundaries but suits over claims that purport to cover any possible way
of achieving a goal. The fact that there are lots of patents with broad
claims purporting to cover those goals creates a patent thicket. And while
the breadth of those claims should (and does) make them easier to
invalidate,12 the legal deck is stacked against companies who seek to
invalidate overbroad patent claims.

This is a problem primarily in software. We wouldn’t permit in any
other area of technology the sorts of claims that appear in thousands of
different software patents. Pharmaceutical inventors don’t claim “an
arrangement of atoms that cures cancer,” asserting their patent against
any chemical, whatever its form, that achieves that purpose. Indeed, the
whole idea seems ludicrous. It is textbook patent law that “[a] claim
covers and secures a process, a machine, a manufacture, a composition of

 12. John Allison, et al. show that the most-asserted software patents—those
litigated in eight or more cases—lose in court roughly 90% of the time. See John R.
Allison et al., Patent Quality and Settlement among Repeat Patent Litigants, 99 GEO. L.J.
677, 680–81 (2011) [hereinafter Allison et al., Patent Quality]. Because the authors
focused on the most-litigated patents, however, and because virtually all the
most-litigated software patents were enforced by patent trolls, they cannot reject the
possibility that the low success rate was due to characteristics of the plaintiff rather than
the fact that the patent was a software patent. Id. at 708–09. Indeed, follow-up work by
Shawn Miller—who counts cases differently—finds that outside software, the
most-litigated patents are actually more successful. Shawn P. Miller, What’s the
Connection between Repeat Litigation and Patent Quality? A (Partial) Defense of the
Most Litigated Patents, 16 STAN. TECH. L. REV. 313, 332 (2013), available at
http://stlr.stanford.edu/pdf/mostlitigatedpatents.pdf.

2013:905 Functional Claiming 909

matter, or a design, but never the function or result of either”13
Pharmaceutical patent owners invent a drug, and it is the drug that they
are entitled to patent. But in software, as we will see, claims of just that
form are everywhere.14

While there are some arguments in favor of broad functional claims
in software, they are insufficient to justify the costs they impose. As it
did seventy-five years ago, the law should rein in efforts to claim to own
a goal itself rather than a particular means of achieving that goal. Doing
so should not require legislative action; it is enough to interpret existing
Section 112(f) in light of the realities of software and modern patent
practice. And so, with one fell swoop—without changing the patent
statute and without invalidating existing patents—we may be able to
solve most of the software patent problem.

In Part I, I discuss the history of functional claiming and how it was
cabined. In Part II, I describe the explosion of functional claims in
software and how they have managed to skirt the limits imposed on
functional claiming. In Part III, I argue that functional claiming in
software is responsible for many of the ills that beset the software patent
system. Finally, in Part IV, I argue that the problem could be solved
simply by applying the rules of means-plus-function claims to software.

 13. Ernest B. Lipscomb III, 6 LIPSCOMB’S WALKER ON PATENTS § 21:17, at
315–16 (3d ed. 1987) (citation omitted). Indeed, try to sneak functional language into a
claim in some other area and the PTO will ignore it, assuming that it is of no effect in
limiting the claim. See Minton v. Nat’l Ass’n of Sec. Dealers, Inc., 336 F.3d 1373 (Fed.
Cir. 2003) (A “clause in a method claim is not given weight when it simply expresses the
intended result of a process step positively recited.”); UNITED STATES PATENT AND
TRADEMARK OFFICE, MANUAL OF PATENT EXAMINING PROCEDURE § 2111, available at
http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2111_04.htm. It is not
clear whether this rule survives In re Jasinski, 508 F. App’x 950 (Fed. Cir. 2013) which
held the contrary.
 14. This is not to say there is no functional claiming in the life sciences. Some
pharmaceutical patents do claim by function, for example in drug dissolution profile
claims (which claim a drug dosage that dissolves by a certain percentage over a certain
period of time). See, e.g., U.S. Patent No. 6,403,120 (filed Sept. 12, 2001); U.S. Patent
No. 6,419,958 (filed June 19, 2001); SHASHANK UPADHYE, GENERIC PHARMACEUTICAL
PATENT AND FDA LAW § 1:19 (2012 ed.). And some gene patents are claimed in
functional terms, as having a particular sequence homology to a known gene sequence
coupled with the same functional characteristics. But in both cases the functional
language is coupled with structural limitations on the composition of matter claimed. If
not, the claim is invalid. See, e.g., Amgen, Inc. v. Chugai Pharm. Co., 927 F.2d 1200
(Fed. Cir. 1991) (invalidating such a claim); see also Bayer Cropscience AG v. Dow
Agrosciences LLC, No. 13-1002 (Fed. Cir. Sept. 3, 2013) (rejecting broad functional
claim language in biotechnology case); Regents of the Univ. of Calif. v. Eli Lilly & Co.,
119 F.3d 1559, 1568 (Fed. Cir. 1997) (rejecting claim “because it does not distinguish the
claimed genus from others, except by function. It does not specifically define any of the
genes that fall within its definition It is only a definition of a useful result rather than
a definition of what achieves that result.”). That’s not true in software.

910 WISCONSIN LAW REVIEW

While doing so would narrow the scope of software patents, unfairly in a
few cases, on balance the social benefits would be substantial. Indeed,
ending functional claiming may be the only way out of the software
patent morass in which we now find ourselves.

I. THE HISTORY OF FUNCTIONAL CLAIMING

Traditionally, a patent was not defined by its claims, but by what the
patentee actually built. An inventor would describe her invention so that
others could use it. If that invention had never been made before, she was
entitled to patent it.15 Even in the early nineteenth century, when
patentees voluntarily began writing “claims” that defined what they did
and didn’t view as their invention, the claims were directed to what the
patentee had actually built.16 In patent parlance, the patent system in the
first half of the nineteenth century involved central, not peripheral
claiming. Put another way, early patent claims served as sign posts, not
as fence posts.17

Under a central claiming system, if the defendant made the very
same machine as the patentee, he was clearly an infringer.18 But what if
the defendant’s machine differed somewhat from the plaintiff’s? In that
case the courts had to decide whether the defendant’s product was
sufficiently similar to the patentee’s that it should be held to infringe. Put
another way, under central claiming nearly every patent lawsuit looked
like what we would today call the doctrine of equivalents—a judgment
call made by the courts as to how different two devices were. Courts
developed standards for cabining those questions. They decreed that
“pioneering inventions” were entitled to broader protection than mere
improvements, for instance.19 And they inquired into the

 15. Dan L. Burk & Mark A. Lemley, Fence Posts or Sign Posts? Rethinking
Patent Claim Construction, 157 U. PA. L. REV. 1743, 1766–67 (2009) [hereinafter Burk
& Lemley, Fence Posts].
 16. Id. at 1767.
 17. See generally, id. On the early history of claiming, see, for example,
Michael Risch, America’s First Patents, 64 FLA. L. REV. 1279 (2012).
 18. Jeanne C. Fromer, Claiming Intellectual Property, 76 U. CHI. L. REV. 719,
726–27 (2009).
 19. For discussion of the pioneer patents doctrine, see, for example, Miller v.
Eagle Mfg. Co., 151 U.S. 186, 207 (1894) (“If the invention is broad or primary in its
character, the range of equivalents will be correspondingly broad, under the liberal
construction which the courts give to such inventions.”); Perkin-Elmer Corp. v.
Westinghouse Elec. Corp., 822 F.2d 1528, 1532 (Fed. Cir. 1987) (“A pioneer invention is
entitled to a broad range of equivalents.”); Michael J. Meurer & Craig Allen Nard,
Invention, Refinement, and Patent Claim Scope: A New Perspective on the Doctrine of
Equivalents, 93 GEO. L.J. 1947, 2004 (2005) (arguing that pioneer inventions are

2013:905 Functional Claiming 911

interchangeability of the parts of the plaintiff’s and defendant’s
inventions.20 But at base the infringement inquiry in a central claiming
system was a gestalt, case-by-case judgment call.

Beginning in the middle of the nineteenth century, inventors sought
greater clarity in the boundaries of their invention by attempting to
define their invention at a higher level of abstraction. Rather than
claiming the device they actually built or described, inventors sought to
identify the inventive contribution and to claim any device that
incorporated that inventive contribution, even if it was not identical to
the patentee’s device.21 These patentees were using claim language not to
signpost what they had done, but to try to define a conceptual area
around which they could place legal fence posts. An inventor of a new
chemical might, for instance, claim a group of related chemicals in order
to avoid having to fight in court about whether the defendant’s slightly
modified chemical infringed on the patentee’s. Or the inventor of Velcro
might claim, not the particular application they first put Velcro to, but the
use of hook-and-eye closures as fasteners regardless of what is being
fastened. Today, peripheral claiming is universal; patentees write claims
in an effort to define the outer boundaries of their invention.22

Once inventors began trying to define the outer boundaries of their
invention, some inventors began to define their contribution in terms of

deserving of greater protections because of the inherent difficulty of anticipating how a
uniquely new invention might be imitated); John R. Thomas, The Question Concerning
Patent Law and Pioneer Inventions, 10 HIGH TECH. L.J. 35, 37 (1995) (“Courts construe
pioneer patent claims . . . to encompass a broader range of so-called ‘equivalents’ during
an infringement determination.”). But see Brian J. Love, Interring the Pioneer Invention
Doctrine, 90 N.C. L. REV. 379 (2012) (arguing that “truly pioneering inventions do not
exist” because “virtually all ‘pioneer’ inventions were independently and
contemporaneously invented by multiple groups working to solve the same known
problem.”) The Court of Customs and Patent Appeals, the predecessor to the Federal
Circuit, applied the pioneer patent doctrine. See Autogiro Co. v. United States, 384 F.2d
391, 400–01 (Ct. Cl. 1967). And the Supreme Court continues to talk about patent scope
under the doctrine of equivalents as a function of how pioneering the patent is. See
Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 27 n.4 (1997).
 20. See Hilton Davis Chem. Co. v. Warner-Jenkinson Co., 62 F.3d 1512, 1519
(Fed. Cir. 1995) (en banc) (noting “known interchangeability” of parts is sufficient to
show equivalence), rev’d on other grounds, 520 U.S. 17 (1997).
 21. See Burk & Lemley, Fence Posts, supra note 15, at 1784–85.
 22. One might question whether it is really possible to define the universe of
things that encompass the inventive concept ex ante. Jeff Lefstin has argued that the
entire inquiry is impossible; by definition, patentees writing peripheral claims are trying
to encompass (and therefore teach and describe) an infinite category of things, including
things that have not yet been developed. Jeffrey A. Lefstin, The Formal Structure of
Patent Law and the Limits of Enablement, 23 BERKELEY TECH. L.J. 1141, 1167–74
(2008).

912 WISCONSIN LAW REVIEW

market substitution rather than technical substitution.23 The inventor of a
hybrid gas-electric car engine, for instance, might want to define her
invention as encompassing any hybrid engine, not simply a hybrid
engine that works on the same technical principles as the one they
designed. So she defined her claims not in technical terms, but in
functional ones: “an engine that performs this function.” This was even
easier with the rise of process claims, which were not explicitly tied to
any particular machine.24 For the patentee, the desirability of such
functional claiming is obvious: a claim that covers any machine that
performs the same function as the patentee’s prevents any substitute
technologies from competing with the patentee’s; anything that
substitutes for the patentee’s invention is by definition within the scope
of such a claim.

From a social perspective, however, such broad claims were more
worrisome. Patent law isn’t necessarily designed to prevent all market
competition. To the contrary, it is designed to promote the development
of new technologies, many of which compete (albeit imperfectly) with
existing patents.25 A broad functional claim is more likely to be invalid,
either because it treads on the prior art or because the patentee hasn’t
sufficiently enabled the broad functional claim they have written. Indeed,
as early as 1840, Justice Joseph Story invalidated a functional patent
claim.26 But that didn’t prevent patentees from seeking such claims, or

 23. On this distinction, see Jeanne Fromer & Mark A. Lemley, The Audience in
IP Infringement, 112 MICH. L. REV. (forthcoming 2013), available at http://papers.ssrn.
com/sol3/papers.cfm?abstract_id=2272235.
 24. Processes were not clearly patentable until Expanded Metal v. Bradford,
214 U.S. 366, 385–86 (1909). On the rise of process patents, see Risch, supra note 17, at
1289–94.
 25. For discussion of how IP rights promote competition from imperfect
substitutes, see, for example, Michael Abramowicz, An Industrial Organization
Approach to Copyright Law, 46 WM. & MARY L. REV. 33 (2004); Christopher S. Yoo,
Copyright and Product Differentiation, 79 N.Y.U. L. REV. 212, 218–19 (2004)
[hereinafter Yoo, Differentiation]; Christopher S. Yoo, Copyright and Public Good
Economics: A Misunderstood Relation, 155 U. PA. L. REV. 635, 706–14 (2006). Michael
Abramowicz takes this as an argument for expanding patent rights into new areas such as
business methods. See Michael Abramowicz & John F. Duffy, Intellectual Property for
Market Experimentation, 83 N.Y.U. L. REV. 337, 395–408 (2008); see also Michael
Abramowicz, The Danger of Underdeveloped Patent Prospects, 92 CORNELL L. REV.
1065 (2007) (arguing for a patent auction system allowing term extension to help combat
patent underdevelopment). Abramowicz underestimates the breadth of existing patents
and therefore the harm they can cause in preventing close substitutes. For an argument
that more IP rights confer significant power over price than previously suspected, see
Mark A. Lemley & Mark P. McKenna, Is Pepsi Really a Substitute for Coke? Market
Definition in Antitrust and IP, 100 GEO. L.J. 2055, 2081–91 (2012).
 26. Wyeth v. Stone, 30 F. Cas. 723 (C.C.D. Mass. 1840) (No. 18,107).

2013:905 Functional Claiming 913

the Patent Office from struggling with them.27 Invalidating a patent is
hard; patents are clothed with a strong presumption of validity.28 And
many of those patents were indeed determined to be quite broad.29

The Wright Brothers, for instance, invented only a particular
improvement to flying machines, albeit a critical one: they came up with
a way of warping a wing to control the direction of flight while turning a
rear rudder to counterbalance the effect of bending the wing, maintaining
the stability of the plane.30 The Wrights solved the stability problem by
having a single cable warp the wing and turn the rudder at the same
time.31 Their patent, however, was written using functional language,
claiming “means for simultaneously moving the lateral portions [of a
wing] into different angular relations” and “means whereby said rudder
is caused to present to the wind that side thereof . . . having the smaller
angle of incidence.”32 Glenn Curtiss improved the design of the wing by
using ailerons, movable portions of the wing that had been developed by
a consortium that included Alexander Graham Bell.33 Ailerons could be
moved independently of the rudder by the pilot; the two were not
connected, as they were in the Wright’s design. But the Wright Brothers
nonetheless successfully asserted the patent against subsequent inventors
such as Glenn Curtiss.34 Judge Learned Hand held that the ailerons under
separate control were literally within the scope of the patent:

 27. E.C. Reynolds, a patent examiner, wrote in 1915 that “[t]here are few, if
any, classes of claims more difficult to deal with than” functional claims. E.C. Reynolds,
Mechanical Processes and Functional Claims, in 1 PATENT OFFICE PAPERS No. 32, 1
(Charles W. Mortimer ed. 1917).
 28. Microsoft Corp. v. i4i LP, 131 S. Ct. 2238 (2011). For an argument that that
strong presumption of validity is unwarranted, see Doug Lichtman & Mark A. Lemley,
Rethinking Patent Law’s Presumption of Validity, 60 STAN. L. REV. 45, 47–59 (2007).
 29. Among the early cases permitting functional claiming, see Morley Sewing
Mach. Co. v. Lancaster, 129 U.S. 263, 283–84, 289–90 (1889). That view was then
ensconced in PTO practice in Commissioner’s decisions such as Ex parte Halfpenny,
1895 Dec. Comm’r Pat. 91, 92; Ex parte Knudsen, 1895 Dec. Comm’r Pat. 29, 32; and
Ex parte Pacholder, 1889 Dec. Comm’r Pat. 55, 61.
 30. JOHN ANDERSON, JR., INVENTING FLIGHT: THE WRIGHT BROTHERS AND
THEIR PREDECESSORS 101 (2004) (“With the exception of wing warping for lateral control
(uniquely their development), [the Wrights] used existing technology.”); TOM D.
CROUCH, A DREAM OF WINGS: AMERICANS AND THE AIRPLANE, 1875–1905, at 229–30,
251–52 (1989).
 31. Mark A. Lemley, The Myth of the Sole Inventor, 110 MICH. L. REV. 709,
726 (2012).
 32. U.S. Patent No. 821,393 claim 7 (filed Mar. 23, 1903).
 33. Lemley, supra note 31, at 726.
 34. Wright Co. v. Herring-Curtiss Co., 211 F. 654, 655 (2d Cir. 1914); Wright
Co. v. Paulhan, 177 F. 261, 264 (C.C.S.D.N.Y. 1910) (holding the Wrights’ patent to be
pioneering and so entitled to broad scope). Using today’s language, one might treat this
as a means-plus-function claim and the aileron as a proposed “equivalent” to the Wrights’

914 WISCONSIN LAW REVIEW

Literally considered, tiller ropes under the independent control
of the operator are equally such a means [I]t is merely a
matter of taste to attach the tiller ropes to the warping rope. The
machine would be changed, but the combination would remain,
because there would remain the means of causing the rudder to
operate35

A frustrated Curtiss was reported to have said that the Wright
brothers believed their patent was so broad that anyone who jumped up
and down and flapped their arms infringed it.36 The Wrights successfully
enforced their patent to defeat all alternative aircraft, including many that
surpassed the technical achievement of the Wrights.37 It was not until the
government stepped in in 1917 and required the Wrights to license their
patents that airplane innovation really took off.38

By the 1940s, functional claiming of this sort had become
widespread. But the lower courts were increasingly skeptical of such
broad claims.39 The Supreme Court rejected the practice in 1946 in
Halliburton Oil Well Cementing Co. v. Walker.40 In that case the patentee
had drafted its claim entirely in functional terms, referring to “means for”
performing various functions.41 The Court held that the patent claim was
indefinite because it did not specify how the patent performed the
function or limited the invention to the particular means the patentee

wing-warping invention. But under current law, the aileron could not literally infringe
under 35 U.S.C. § 112(f) because it did not exist when the Wrights’ patent issued. See
supra note 9 and accompanying text.
 35. Paulhan, 177 F. at 264.
 36. The Wright Brothers Patent War, WIKIPEDIA, http://en.wikipedia.org/wiki/
The_Wright_brothers_patent_war (last visited Sept. 2, 2013).
 37. See Glenn Curtiss and the Wright Patent Battles, U.S. CENTENNIAL OF
FLIGHT COMM’N, http://webarchive.library.unt.edu/eot2008/20080916225553/http://
centennialofflight.gov/essay/Wright_Bros/Patent_Battles/WR12.htm (last visited Sept. 2,
2013). For more detailed discussion of this history, see, Lemley, supra note 31.
 38. So to speak. Lemley, supra note 31, at 711, 726.
 39. In re Gardner, 32 App. D.C. 249, 250–51 (D.C. Cir. 1908) (concluding that
“a device for automatically indicating . . . simultaneous pressures and heat
characteristics” in a vapor register, was a mere claim for a function rather than a
description of a particular device).
 40. 329 U.S. 1 (1946). See also General Elec. Co. v. Wabash Appliance Corp.,
304 U.S. 364, 368–74 (1938) (rejecting claim to lighting filament claimed in functional
terms: “comparatively large grains of such size and contour as to prevent substantial
sagging and offsetting”); Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 133
(1948) (Frankfurter, J., concurring) (arguing that claims to groups of bacteria that are
“not identified and are identifiable only by their compatibility” should be rejected
because similar efforts to claim by function in other areas are impermissible).
 41. Halliburton, 329 U.S. at 8–9.

2013:905 Functional Claiming 915

actually invented.42 Substituting broad functional language at the very
point of novelty, the Court said, did not sufficiently put the world on
notice of what the patentee was removing from the world.43

Patent lawyers understood Halliburton to end the practice of
functional claiming,44 though some courts—notably including Judge
Learned Hand—sought to rehabilitate the practice.45 Undeterred, the
patent lawyers took their case to Congress. Six years later, when
Congress passed the Patent Act of 1952, it acted to “modify or render
obsolete” the Halliburton decision and permit functional claiming
subject to some conditions.46 The new Act overruled Halliburton insofar
as that decision had prevented functional claiming at the point of
novelty.47 Patentees could once again use functional language such as

 42. Id. at 12–13.
 43. Id. See also General Elec. Co., 304 U.S. at 371.
 44. See, e.g., ROBERT C. FABER, LANDIS ON MECHANICS OF PATENT CLAIM
DRAFTING § 34 (3d ed. 1990).
 45. See Philip A. Hunt Co. v. Mallinckrodt Chem. Works, 177 F.2d 583, 585 (2d
Cir. 1949) (arguing that “there are generally many variants well-known to the art It
is the office of the claims to cover these, and it is usually exceedingly difficult, and
sometimes impossible, to do so except in language that is to some degree ‘functional’
. . .”). Judge Hand sought to avoid the reach of Halliburton by applying the doctrine of
equivalents, an approach that later made it into the 1952 legislative compromise. Id.
 46. The Chairman of Subcommittee No. 3, Hon. Joseph R. Bryson,
Representative from South Carolina, discussed the provision of the bill in an address to
the Philadelphia Patent Law Association on January 24, 1952, where he stated in
pertinent part: “This provision in reality will give statutory sanction to combination
claiming as it was understood prior to the Halliburton decision. All the elements of a
combination now will be able to be claimed in terms of what they do as well as in terms
of what they are.” In re Fuetterer, 319 F.2d 259, 264 n.11 (C.C.P.A. 1963) (quoting
history). In addition, one of the authors of the Act of 1952, P. J. Federico, who was also
Examiner-in-Chief of the Patent Office, wrote:

 The last paragraph of section 112 relating to so-called functional
claims is new. It provides that an element of a claim for a combination (and a
combination may be not only a combination of mechanical elements, but also
a combination of substances in a composition claim, or steps in a process
claim) may be expressed as a means or step for performing a specified
function, without the recital of structure, material or acts in support thereof. It
is unquestionable that some measure of greater liberality in the use of
functional expressions in combination claims is authorized than had been
permitted by some court decisions, and that decisions such as that in
Halliburton Oil Well Cementing Co. v. Walker, 67 S. Ct. 6, 329 U.S. 1, 91 L.
Ed. 3 (1946), are modified or rendered obsolete, but the exact limits of the
enlargement remain to be determined.

P.J. Federico, Commentary on the New Patent Act, reprinted in 75 J. PAT. & TRADEMARK
OFF. SOC’Y 161, 186 (1993).
 47. Federico, supra note 46, at 186.

916 WISCONSIN LAW REVIEW

“means for processing data” even if the data processing means was the
novel part of the invention.48

The statute didn’t simply permit unfettered functional claiming,
however. Instead, Section 112(f) provided:

 An element in a claim for a combination may be expressed
as a means or step for performing a specified function without
the recital of structure, material, or acts in support thereof, and
such claim shall be construed to cover the corresponding
structure, material, or acts described in the specification and
equivalents thereof.49

This “means-plus-function” claiming represents a significant
departure from the normal rules of patent claim construction. Patent
claim construction starts with the plain meaning of the claim language.
While the description of the invention can be read to help understand
what the claims mean, the fundamental rule of patent claim construction
is that the claim terms are not to be narrowed by reference to what the
patentee actually invented or described.50 A patentee can, for example,
claim a group of chemicals without having described, much less tested,
all or even very many of the chemicals in the group. Similarly, a patent
claim to a “chair comprising a seat, legs, and a back” would cover a
nearly infinite array of chairs, regardless of how many legs it has,
whether it has wheels on the legs, and whether it is made of wood, metal,
plastic, or upholstery.51 Further, if the patentee uses the magic word
“comprising” (and virtually all do) the patent claim must include the
listed elements but is not limited to those elements; adding additional
elements (such as arms) will not avoid infringement.52

Against this backdrop, Section 112(f) actually represents a
significant narrowing of claim scope. While the 1952 Act rejected
Halliburton and permitted functional claiming, in fact the sort of
functional claiming the statutory text allows is far different than the
functional claiming that was the norm in 1940. A means-plus-function

 48. See In re Swinehart, 439 F.2d 210, 212–13 (C.C.P.A. 1971) (“[T]here is
nothing intrinsically wrong with defining something by what it does rather than what it is
in drafting patent claims.”); see also In re Schreiber, 128 F.3d 1473 (Fed. Cir. 1997)
(relying on the Swinehart holding).
 49. 35 U.S.C. § 112(f) (2012).
 50. See, e.g., Becton, Dickinson & Co. v. Tyco Healthcare Group, 616 F.3d
1249, 1253–57 (Fed. Cir. 2010); E.I. du Pont de Nemours & Co. v. Phillips Petroleum,
849 F.2d 1430, 1433 (Fed. Cir. 1988).
 51. See Lefstin, supra note 22, at 1169–70 (proposing this chair example).
 52. Id.

2013:905 Functional Claiming 917

claim element is not interpreted to cover every means of performing the
function. Instead, the courts apply a different rule of claim construction,
limiting the scope of these claims by reading in the particular
technologies described in the patent specification.53 To take an example,
suppose that the patent claim includes as an element a “means for
processing data.”54 Read literally, without reference to Section 112(f),
this language would encompass any possible means for processing data,
including any computer, but also a calculator, an abacus, pencil and
paper, and perhaps even the human brain. Section 112(f) permits the use
of such functional language but doesn’t permit it to cover any means of
performing the data-processing function. Instead, the claim would be
limited to the particular “means for processing data” actually described
in the patent specification (say, an iPad) “and equivalents thereof.”55

This “means-plus-function” claiming is not limited to patent claims
covering machines or articles of manufacture. The statute speaks of
“structure, material, or acts in support” of the function,56 a clear
indication that the concept applies to process claims as well. And indeed,
the courts have applied the same basic rules to so-called
“step-plus-function” claims.57 Like machine claims defined in functional
terms, step-plus-function claims prevent process patentees from claiming
the function itself, limiting them to the particular algorithm or series of
steps disclosed in the specification to perform that function “and
equivalents thereof.”58

 53. See In re Hyatt, 708 F.2d 712, 713–14 (Fed. Cir. 1983).
 54. Another limit on means-plus-function claiming is that it must occur in the
course of a combination of elements. “Single means” claims are invalid. See id. at 714. If
there is more than one element, however, each of the elements can itself be a
means-plus-function claim.
 55. See, e.g., In re Donaldson Co., 16 F.3d 1189, 1193–94 (Fed. Cir. 1994) (en
banc).
 56. 35 U.S.C. § 112(f) (2012) (emphasis added).
 57. In this paper, I will sometimes use the term “means-plus-function” to
encompass both true means-plus-function claims to machines and step-plus-function
claims to processes.
 58. Alloc, Inc. v. U.S. Int’l Trade Comm’n, 342 F.3d 1361, 1373 (Fed. Cir.
2003) (quoting 35 U.S.C. § 112 ¶ 6 (2000)); O.I. Corp. v. Tekmar Co., 115 F.3d 1576,
1583 (Fed. Cir. 1997). At the same time, courts have cautioned that not every step that
includes “an ‘ing’ verb” should be construed as a step-plus-function claim. Id. at
1582–83. And one judge has gone further, asserting in a concurrence that
step-plus-function claims “require distinct analysis” from means-plus-function claims.
Seal-Flex, Inc. v. Athletic Track & Court Constr., 172 F.3d 836, 848 (Fed. Cir. 1999)
(Rader, J., concurring). But the differences Judge Rader identifies relate to identifying
step-plus-function claims, not to how they are treated once they are identified. There is a
surprising dearth of case law on step-plus-function claims. See Brad A. Schepers, Note,
Interpretation of Patent Process Claims in Light of the Narrowing Effect of 35 U.S.C.

918 WISCONSIN LAW REVIEW

While the last phrase in the statute—“and equivalents thereof”—
permits some broadening of both means-plus-function and
step-plus-function claims,59 courts in the last fifteen years have not read
“equivalents” broadly.60

The result is that means-plus-function claiming today is viewed as
narrow and easy for potential infringers to evade. Patent lawyers tend to
avoid means-plus-function claim language, except as an “extra” put in a
separate claim to hedge risk.61 Litigators tend to dismiss those claims,
reasoning that once the defendant is allowed to read limits in from the
specification, there will always be a way to avoid infringement.62 In
short, while the 1952 Act theoretically restored functional claiming, the
option it offered was not really functional claiming at all and has not

§ 112(6), 31 IND. L. REV. 1133, 1163 (1998).
 59. See, e.g., WMG Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339, 1347
(Fed. Cir. 1999); Al-Site Corp. v. VSI Int’l, Inc., 174 F.3d 1308, 1320–21 (Fed. Cir.
1999); Chiuminatta Concrete Concepts, Inc. v. Cardinal Indus., Inc., 145 F.3d 1303,
1310 (Fed. Cir. 1998).
 60. See, e.g., John R. Allison & Mark A. Lemley, The (Unnoticed) Demise of
the Doctrine of Equivalents, 59 STAN. L. REV. 955 (2007). For more discussion, see infra
notes 196–201 and accompanying text.
 61. Note, Everlasting Software, 125 HARV. L. REV. 1454, 1460 n.38 (2012)
(“[P]atent attorneys often avoid means-plus-function claiming”). Dennis Crouch
finds that the number of claims with “means for” language has declined from 24% in
2001 to only 7% today. Dennis Crouch, Means Plus Function Claiming, PATENTLY-O,
(Jan. 14, 2013), http://www.patentlyo.com/patent/2013/01/means-plus-function-
claiming.html. And that overstates their use, since most of these claims are in patents that
also include other claims without that language. For a discussion of the specifics of
means-plus-function claiming in software, see Sebastian Zimmeck, Use of Functional
Claim Elements for Patenting Computer Programs, 12 J. HIGH TECH. L. 168 (2011).
 62. See, e.g., Ronald L. Lacy et al., Crafting the Claims, in ELECTRONIC AND
SOFTWARE PATENTS: LAW AND PRACTICE (2d ed. 2011) (“Like method claims, apparatus
claims may be afforded a broader scope of interpretation than means-plus-function
claims. The apparatus claim is interpreted in light of the specification, but not under”
Section 112[f].); Rudolph P. Hofmann, Jr. & Edward P. Heller, III, The Rosetta Stone for
the Doctrines of Means-Plus-Function Patent Claims, 23 RUTGERS COMP. & TECH. L.J.
227, 231 (1997) (“Thus, while general claims enjoy a scope as broad as their
unambiguous claim language permits, means-plus-function claims are given a different,
more limited treatment.”); Michael A. Molano & Graham (Gray) M. Buccigross, Traps
for the Unwary: Issues Surrounding Means-Plus-Function Claims in the Software
Context, in FUNDAMENTALS OF PATENT PROSECUTION 2011: A BOOT CAMP FOR CLAIM
DRAFTING AND AMENDMENT WRITING (Practising Law Institute 2011); Ryan Sharp, Can
Beauregard Claims Show You the Money?, 2 CYBARIS: INTELL. PROP. L. REV. 25, 34
(2011), http://web.wmitchell.edu/cybaris/wp-content/uploads/2011/08/Sharp.pdf
(“[I]t is well known that means-plus-function claims are narrowly construed”). For a
dissenting view, see Zimmeck, supra note 61, at 228–29 (arguing that
means-plus-function claims can be broader than corresponding apparatus claims that
disclose structure).

2013:905 Functional Claiming 919

been viewed as an attractive option for those seeking broad patent
claims.

II. THE NEW FUNCTIONAL CLAIMING

While means-plus-function claiming under Section 112(f) is in
disfavor among patentees, that doesn’t mean inventors have stopped
seeking broad patent claims. One way to seek broad patent claims is to
try to define a broad group of things. That works reasonably well in
chemistry or biotechnology, where we have a standard language that
allows us to define groups and determine whether a later-developed
chemical is in the group. But in other areas, like mechanical inventions, a
broad claim requires defining the invention at a higher level of
abstraction—as hook-and-eye closures generally rather than the
particular implementation of Velcro, or as hybrid gasoline-electric
engines generally rather than the particular implementation of that
concept in, say, Honda’s Integrated Motor Assist. While these abstract
claims are broader—they encompass a genus of possible
implementations—they still require an irreducible minimum structure,
and that structure limits the claim. There may be a number of different
hook-and-eye closures, but means for attaching that don’t include hooks
and eyes don’t fall within the scope of a patent claim that requires
hook-and-eye closures.

Computer software gives patentees the opportunity to take
abstraction in patent claiming to an extreme.63 For the genius of
computers is that structure and function can be almost completely
separated. The hardware “structure” of a computer software invention
is . . . a computer. Generally speaking it doesn’t much matter what type
of computer a program runs on; all computers have standard elements.
That fact has given patentees an opening to write “structural” claims in
which the structure is not novel and does no work. A patentee who
claims “means for calculating an alarm limit” is invoking the limits of
Section 112(f), and the claim will accordingly be limited to the particular
software algorithm or implementation the patentee described in the
specification. But if the same patentee claims “a computer programmed
to calculate an alarm limit,” courts today will read the term “computer”
as sufficient structure and will understand the claims to cover any
computer that can calculate an alarm limit, however the calculation is
programmed.64

 63. See Note, supra note 61, at 1459–60.
 64. One might argue that such a claim is really a process claim, not a system
claim at all. The Federal Circuit drew that conclusion in Cybersource Corp. v. Retail

920 WISCONSIN LAW REVIEW

Modern software patent claims quite commonly take this form.
Indeed, by my estimate there are tens, perhaps hundreds of thousands of
such patents.65 Here are just a few examples from litigated software
cases:

• “A method for generating a file note for an insurance claim,

comprising the steps . . . executed in a data processing
system, of [a series of conceptual steps].”66

• “A method for operating a computer system to facilitate an
exchange of identities between two anonymous parties,
comprising the steps of [a number of process steps].”67

• “A computer readable medium containing program

instructions for detecting fraud in a credit card transaction
between a consumer and a merchant over the Internet,
wherein execution of the program instructions by one or
more processors of a computer system causes the one or
more processors to carry out the steps of [a number of
steps].”68

• “A computer program product for use in a system having at

least one client workstation and one network server coupled
to said network environment, wherein said network
environment is a distributed hypermedia environment, the
computer program product comprising: a computer usable
medium having computer readable program code physically

Decisions, Inc., 654 F.3d 1366, 1376–77 (Fed. Cir. 2011). But since Section 112(f)
applies to process as well as system claims, the characterization should not matter for our
purposes.
 65. Colleen Chien and Aashish Karkhanis estimate based on a study of litigated
patents that 100% of troll software patents and 50% of non-troll software patents use
functional claiming. Of those patents, 40% had only functional abstractions in the
specification, while the rest had at least some code or structural definition. Colleen V.
Chien & Aashish R. Karkhanis, Software Patents and Functional Claiming 40 (Santa
Clara Univ. Sch. of Law, Legal Studies Research Papers Series, Working Paper No.
06-13, 2013), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2215867.
 66. U.S. Patent No. 7,017,111 B1 col.7 ll.27–29 (filed Apr. 14, 2000) (emphasis
added), at issue in Accenture v. Guidewire, Inc., No. 11-1486 (Fed. Cir. Sept. 5, 2013).
Full disclosure: I represent Guidewire in this case.
 67. U.S. Patent No. 5,884,270 col.23 ll.60–62 (filed Sept. 6, 1996) (emphasis
added), at issue in Walker Digital, LLC v. MySpace, Inc., No. 11-318 (D. Del. July 25,
2013). Full disclosure: I represented LinkedIn in this case.
 68. U.S. Patent No. 6,029,154, col.4 ll.45–51 (filed July 28, 1997) (emphasis
added), at issue in Cybersource, 654 F.3d 1366.

2013:905 Functional Claiming 921

embodied therein, said computer program product further
comprising [software steps].”69

• “A computer-readable storage medium storing program

code for causing a server that serves as a gateway to a client
to perform the steps of: [processing program
instructions].”70

• “A computer aided method of managing a credit

application, the method comprising the steps of: receiving
credit application data from a remote application entry and
display device; selectively forwarding the credit application
data to remote funding source terminal devices; [other steps
without hardware omitted].”71

• “A method for distribution of products over the Internet via

a facilitator, said method comprising the steps of [many
steps that do not require any hardware].”72

• “A method using a computer network and a database
accessible through the computer network, comprising the
steps of [various steps, some employing the terms
“computer network” and “database”].”73

• “[C]omputer readable program code configured to cause a
computer to [perform a series of display steps].”74

• “In a data communication system wherein messages
comprising data code words are to be transmitted from a
data transmitter to one or more of a plurality of data

 69. U.S. Patent No. 5,838,906 col.17 ll.58–65 (filed Oct. 17, 1994) (emphasis
added), at issue in Eolas Techs., Inc. v. Microsoft Corp., 457 F.3d 1279 (Fed. Cir. 2006).
 70. U.S. Patent No. 6,092,194 col.13 ll.13–15 (filed Nov. 6, 1997) (emphasis
added), at issue in Finjan, Inc. v. Secure Computing Corp., 626 F.3d 1197 (Fed. Cir.
2010).
 71. U.S. Patent No. 7,181,427 B1 col.20 ll.54–59 (filed Sept. 3, 1997)
(emphasis added), at issue in Dealertrack, Inc. v. Huber, 674 F.3d 1315 (Fed. Cir. 2012).
 72. U.S. Patent No. 7,346,545 B2 col.8 ll.5–6 (filed May 29, 2001) (emphasis
added), at issue in Ultramercial, LLC v. Hulu, LLC, 657 F.3d 1323 (Fed. Cir. 2011).
 73. U.S. Patent No. 5,778,367 col.12 ll.37–59 (filed Dec. 14, 1995) (emphasis
added), at issue in MySpace, Inc. v. Graphon Corp., 672 F.3d 1250 (Fed. Cir. 2012).
 74. U.S. Patent No. 5,878,400 col.23 ll.22–23 (filed June 17, 1996) (emphasis
added), at issue in Versata Software Inc. v. SAP Am., Inc., 2011 WL 4017939 (E.D. Tex.
Sept. 9, 2011).

922 WISCONSIN LAW REVIEW

receivers, a method of transmission of such messages
comprising the steps of [data processing steps].”75

• “A method for use in a computer having a display
comprising the steps of [employing various software
tools].”76

• “[S]oftware executing in the central processor to configure
the processor so as to [perform certain functions].”77

Nor is this a problem only for old patents currently in litigation.

Patents issuing today have the same sorts of problems.78

 75. U.S. Patent No. 4,975,952 col.7 ll.47–51 (filed May 11, 1988) (emphasis
added), at issue in Fujitsu Ltd. v. Netgear Inc., 620 F.3d 1321 (Fed. Cir. 2010).
 76. U.S. Patent No. 4,763,356 col.17 ll.25–26 (filed Dec. 11, 1986) (emphasis
added), at issue in Lucent Techs., Inc. v. Gateway, Inc., 580 F.3d 1301 (Fed. Cir. 2009).
 77. U.S. Patent No. 7,698,372 B2 col.43 ll.53–54 (filed Sept. 28, 2009)
(emphasis added), at issue in Easyweb Innovations, LLC v. Twitter Inc., No.
11-CV-04550 (E.D.N.Y. filed Sept. 19, 2011). Full disclosure: I represent Twitter in this
case, which is pending.
 78. Here are three examples selected from ten patents I reviewed that issued in
January 2013:

• “[A] computer programmed to receive input data from the job-site positioning
system and the feature locating system, the computer evaluating the input data
and a relationship between the job-site positioning system and the feature
locating system to determine the location of the topographic feature at the
job-site.” U.S. Patent No. 8,363,210 B2 col.6 ll.44–49 (filed Oct. 26, 2007)
(issued Jan. 29, 2013).

• “A method of creating a light effect, said effect providing perceived moving
images to the human eye, said method comprising:

i. concurrently exposing a variety of colored designs to at least two
different colors of light emitting diode lights;
ii. controlling said light emitting diode lights to provide a desired light
effect selected from the group consisting of

i. movement, and,
ii. complete change of image colors in the designs.”

U.S. Patent No. 8,350,481 B1 col.2 ll.43–51 (filed May 27, 2010) (issued Jan.
8, 2013).

• “[S]aid programmable integrated circuit being programmable to accept said

data as input and generate an output signal to said LED driver circuit
corresponding to said data.” U.S. Patent No. 8,344,639 B1 col.7 ll.47–50 (filed
Jan. 31, 2010) (issued Jan 1, 2013).

2013:905 Functional Claiming 923

My point in highlighting these examples is not to suggest that all
these claims are unduly broad, though some have been held invalid and
some others probably will be or should have been. Some of these claims
contain process steps sufficiently detailed that the resulting claims are
quite narrow. Rather, the point is that the claims are effectively unlimited
as a matter of structure. The function they perform may be simple or
complex, broad or narrow, but in the modern world the patent claims
listed above effectively cover any device that performs that function in
any way. Even if it were theoretically possible to implement a computer
program in some device other than “a computer having a display,” as a
practical matter, any use of the steps specified in that patent is going to
occur in a computer, and any modern computer is going to have a
display. As a practical matter, claims with a trivial structural element that
everyone must include are claims to function, not structure.

The absence of a real hardware limitation wouldn’t be a problem if
the patentee’s claims were limited to a particular software
implementation of the invention. Arguably, we shouldn’t care what
hardware substrate a software invention runs on. In fact, however, those
claims are rarely limited to a particular software algorithm. The process
steps implemented in the generally claimed computer are also claimed in
broad functional terms. That is, the patentee claims the end it
accomplishes, not the means of getting there. The presence of a nominal
hardware limitation serves to obscure the fact that the real structure
doing the work—the computer program—is absent.

Indeed, software patent claims often go further. Rather than
claiming any implementation of a particular idea in a computer, these
“capability claims” assert ownership of any device that is capable of
implementing that idea, whether or not the device actually does so. There
are numerous examples of claims reciting phrases such as
“programmable selection means for . . . ,”79 “. . . capable of engaging,”80
“adapted to . . . ,” “for . . . -ing,” “operable to . . . ,” and the like. While
any of a variety of language constructs may be recited by patentees to
denote capability literally present, a recent sample of patent claims
issued indicates that even the most overt form (“capable of”) appears in
the claims of nearly twelve thousand patents issued in the first nine
months of 2011.81 When compared to patents issued a decade earlier,

 79. U.S. Patent No. 4,685,084 col.6 l.8 (filed June 7, 1985), at issue in Intel
Corp. v. U.S. Int’l Trade Comm’n, 946 F.2d 821, 824 n.3 (Fed. Cir. 1991).
 80. U.S. Patent No. US RE37,545 E col.6 ll.56–57 (filed Oct. 21, 1998), at
issue in Revolution Eyewear Inc. v. Aspex Eyewear Inc., 563 F.3d 1358, 1362 (Fed. Cir.
2009).
 81. Mark A. Lemley, David W. O’Brien, & Wade Malone, Capability Claiming
n.13 (2011) (unpublished manuscript), available at https://www.law.stanford.edu/sites/

924 WISCONSIN LAW REVIEW

numbers and percentages are essentially unchanged.82 Overwhelmingly,
these capability claims are software or computer technology patents. And
while the Federal Circuit has read these claims to require the technology
to be programmed into the system, as opposed to covering computers
that would have to be reprogrammed to perform the identified function,83
the combination of a structural element that is essentially not limiting
and a function that doesn’t even have to be enabled can lead to patents
that are broad indeed.84

Software patents, then, have brought back functional claiming as it
existed before 1952. The computer hardware elements impose no real
limitation on an invention that must, of necessity, be implemented in a
computer, particularly since one of the features of computer technology
is that the particular hardware chosen usually doesn’t constrain what
software can be run. Thus, as a practical matter the only real limits on
claims of this sort are the steps the software must perform.

Those software steps are quite often defined in functional terms.
The software claim elements generally do not specify particular coding
approaches or modules that must be used, much less the code that
implements those modules.85 Indeed, courts have not required significant

default/files/event/266396/media/slspublic/Panel%201%20-%20Mark%20Lemley,%20et
%20al%20-%20Capability%20Claiming.pdf.

 Specifically, between 1-January-2011 and 14-October-2011, a search
of the USPTO Patent Full-Text and Image Database (http://patft.uspto.gov/)
indicates that a total of 11,746 U.S. Patents (including reissues) granted with
the textual string “capable of” at least once in the claims. With 193,507 U.S.
Patents issued during the same period, that is slightly more that 6% of the
total. Inclusion of “adapted to” in the search, more than doubles the number
of hits to 27,393 (or more the 14% of all patents issued calendar year 2011 to
date).

Id. at n.13.
 82. Id. at n.14 (“12,343 (or 6.5%) of 184,045 U.S. Patents issued in calendar
year 2001 include the textual string ‘capable of’ at least once in the claims.”).
 83. Typhoon Touch Techs., Inc. v. Dell, Inc., 659 F.3d 1376, 1382 (Fed. Cir.
2011); Fantasy Sports Props. v. Sportsline.com, Inc., 287 F.3d 1108, 1118 (Fed. Cir.
2002).
 84. If read that broadly, they are probably also invalid, since any processor is
presumably “capable of” being programmed to perform the steps in question.
 85. Robin Feldman argues that functional claiming in software results in part
from early judicial doubts about the patenting of computer algorithms themselves:

 The message was clear, however, that if an innovation was ever going
to survive a court challenge, it had to avoid being labeled an algorithm or
looking too much like math. The result was an attempt to describe the process
of what was happening in simple English terms by moving the description of
the process to an even more abstract plane. If successful, the approach would
have the advantage of allowing the inventor to tie up an even larger swath of
territory, given that broad, abstract language had the potential to cover many

2013:905 Functional Claiming 925

disclosure of code or program structure even in the specification.86
Instead, the software elements tend to be drafted in terms of the function

different ways of accomplishing the same result. For example, an algorithm
designed to operate on digital images may be claimed by the simple language
of what it is intended to do, thus covering a far wider territory than
mathematically describing the algorithm itself.

ROBIN FELDMAN, RETHINKING PATENT LAW 109 (2012). Feldman continues:
 Most troubling, the incentive to describe what is happening in
linguistic rather than mathematical terms could also provide a tremendously
wide footprint for each patent. For example, consider the applicant who
would now simply use the claims language “applying a statistical model”
rather than providing the notation of the actual statistical model or formula
that is used. The general term “statistical model” will have very broad
coverage if it is not strictly defined.

Id. at 111–12.
 86. For instance, the Federal Circuit has held that software patentees need not
disclose source or object code, flow charts, or detailed descriptions of the patented
program. Rather, the court has found high-level functional descriptions sufficient to
satisfy both the enablement and best mode doctrines. See Fonar Corp. v. General Elec.
Co., 107 F.3d 1543, 1549 (Fed. Cir. 1997); In re Hayes Microcomputer Prods., Inc.
Patent Litig., 982 F.2d 1527, 1533–34 (Fed. Cir. 1992); Northern Telecom, Inc. v.
Datapoint Corp., 908 F.2d 931, 943 (Fed. Cir. 1990). See also Lawrence D. Graham &
Richard O. Zerbe, Jr., Economically Efficient Treatment of Computer Software: Reverse
Engineering, Protection, and Disclosure, 22 RUTGERS COMPUTER & TECH. L.J. 61, 96–97
(1996); Greg R. Vetter, Patent Law’s Unpredictability Doctrine and the Software Arts,
76 MO. L. REV. 763 (2011) (criticizing this low standard); Anthony J. Mahajan, Note,
Intellectual Property, Contracts, and Reverse Engineering After ProCD: A Proposed
Compromise for Computer Software, 67 FORDHAM L. REV. 3297, 3317 (1998). For
example, in Northern Telecom, the court noted expert testimony that various programs
could be used to implement the invention, and that it would be “relatively straightforward
[in light of the specification] for a skilled computer programmer to design a program to
carry out the claimed invention.” Northern Telecom, 908 F.2d at 941–42. The court
continued:

The computer language is not a conjuration of some black art, it is simply a
highly structured language [T]he conversion of a complete thought (as
expressed in English and mathematics, i.e. the known input, the desired
output, the mathematical expressions needed and the methods of using those
expressions) into a language a machine understands is necessarily a mere
clerical function to a skilled programmer.

Id. at 942 (quoting ex rel. Sherwood, 613 F.2d 809, 817 n.6 (C.C.P.A. 1980). And in
Fonar Corporation v. General Electric Company, the court explained:

 As a general rule, where software constitutes part of a best mode of
carrying out an invention, description of such a best mode is satisfied by a
disclosure of the functions of the software. This is because, normally, writing
code for such software is within the skill of the art, not requiring undue
experimentation, once its functions have been disclosed. It is well established
that what is within the skill of the art need not be disclosed to satisfy the best
mode requirement as long as that mode is described. Stating the functions of
the best mode software satisfies that description test. We have so held

926 WISCONSIN LAW REVIEW

they perform, claiming things like “program code for causing a server
that serves as a gateway to a client to perform the steps of” a, b, and c.87
Any code that causes the computer to perform those steps infringes the
patent claim. It is the function, not the particular tool the patentee
developed to perform the function, that is the subject of the patent.

Nonetheless, these functional software claims have not been subject
to the normal constraints Section 112(f) imposes on means-plus-function
claims. While the Federal Circuit has of late been quite vigilant in
limiting software patentees who write claims in means-plus-function
format to the particular algorithms that implement those claims,88 it has

previously and we so hold today. Thus, flow charts or source code listings are
not a requirement for adequately disclosing the functions of software.

Fonar, 107 F.3d at 1549 (citations omitted).
 Indeed, in a few cases the Federal Circuit has gone so far as to hold that patentees
can satisfy the written description and best mode requirements for inventions
implemented in software even though they do not use the terms “computer” or “software”
anywhere in the specification! See Robotic Vision Sys., Inc. v. View Eng’g, Inc., 112 F.3d
1163 (Fed. Cir. 1997) (best mode); In re Dossel, 115 F.3d 942 (Fed. Cir. 1997) (written
description).
 By contrast, in White Consol. Indus., Inc. v. Vega Servo-Control, Inc., 713 F.2d 788
(Fed. Cir. 1983), the Federal Circuit had invalidated a patent for a machine tool control
system which was run by a computer program. Part of the invention was a programming
language translator designed to convert an input program into machine language, which
the system could then execute. The patent specification identified an example of a
translator program, the so-called SPLIT program, which was a trade secret of the
plaintiff. Id. at 789. The court held that the program translator was an integral part of the
invention, and that mere identification of it was not sufficient to discharge the applicant’s
duty under Section 112. Id. at 790. The court seemed concerned that maintaining the
translator program as a trade secret would allow White to extend the patent beyond the
seventeen year term then specified in the patent code. Id. at 791.
 While White suggests that it is not sufficient merely to identify the program or its
functions, more recent Federal Circuit authority is overwhelmingly to the contrary. See,
e.g., In re Dossel, 115 F.3d at 946–47 (“While the written description does not disclose
exactly what mathematical algorithm will be used to compute the end result, it does state
that ‘known algorithms’ can be used to solve standard equations which are known in the
art.” This was deemed sufficient to describe the invention). For discussion of this issue in
more detail, see Dan L. Burk & Mark A. Lemley, Is Patent Law Technology-Specific?,
17 BERKELEY TECH. L.J. 1155 (2002).
 87. U.S. Patent No. 6,092,104 col.13 ll.13–15 (filed Nov. 6, 1997), at issue in
Finjan, Inc. v. Secure Computing Corp., 626 F.3d 1197 (Fed. Cir. 2010).
 88. Function Media, LLC v. Google Inc., 708 F.3d 1310, 1318 (Fed. Cir. 2013);
ePlus, Inc. v. Lawson Software, Inc., 700 F.3d 509, 518–19 (Fed. Cir. 2012); Noah Sys.,
Inc. v. Intuit Inc., 675 F.3d 1302, 1312–13 (Fed. Cir. 2012); Ergo Licensing, LLC v.
CareFusion 303, Inc., 673 F.3d 1361, 1362, 1365 (Fed. Cir. 2012); Typhoon Touch
Techs., Inc. v. Dell, Inc., 659 F.3d 1376, 1384–86 (Fed. Cir. 2011) (means-plus-function
software claims required disclosure of corresponding structure performing that function
in the specification, but that structure did not need to be described in the form of software
code); In re Aoyama, 656 F.3d 1293, 1294, 1297–98 (Fed. Cir. 2011)
(means-plus-function software patent claim invalid as indefinite for failure to disclose the

2013:905 Functional Claiming 927

not treated any of the claims discussed above as means-plus-function
claims at all. The presence of structure in the form of “a computer” or “a
processor” or even “the Internet” has led the Federal Circuit to give these
claims control over the claimed function however implemented.89 As a

corresponding algorithm performing that function); Aristocrat Techs. Austl. PTY Ltd. v.
Int’l Game Tech., 521 F.3d 1328, 1337–38 (Fed. Cir. 2008); WMS Gaming, Inc. v. Int’l
Game Tech., 184 F.3d 1339, 1349 (Fed. Cir. 1999) (“[T]he disclosed structure is not the
general purpose computer, but rather the special purpose computer programmed to
perform the disclosed algorithm.”). Cf. HTC Corp. v. IPCom GmbH & Co., KG, 667 F.3d
1270, 1272–73 (Fed. Cir. 2012) (where a means-plus-function software claim would have
been invalid as indefinite for failure to disclose the algorithm that performed the
functions of the software, but defendant waived the issue).
 For discussion of these cases, see Sharon Barkume & Michael R. Bielski, Strict
Interpretation of 35 U.S.C. § 112: Requires Universities to Examine Their Patenting
Methods, 28 TOURO L. REV. 183, 197–98 (2012); Elise S. Edlin, Computer Claim
Disarray: Untangling the Means-Plus-Function Doctrine to Eliminate Impermissible
Functional Claiming in Software Patents, 28 BERKELEY TECH. L.J. 417, 419–20 (2013);
Christa J. Laser, A Definite Claim on Claim Indefiniteness: An Empirical Study of
Definiteness Cases of the Past Decade with a Focus on the Federal Circuit and the
Insolubly Ambiguous Standard, 10 CHI.-KENT J. INTELL. PROP. 25, 37 tbls.6 & 7, 39–41
(2010); Vetter, supra note 86, at 797–99.
 In addition, the Federal Circuit’s current approach to written description under
Section 112(a) also seems inconsistent with allowing functional claiming. There, the
court has demanded that inventions be described in structural terms. See Ariad Pharms.,
Inc. v. Eli Lilly & Co., 598 F.3d 1336, 1352 (Fed. Cir. 2010) (en banc); Regents of the
Univ. of Calif. v. Eli Lilly & Co., 119 F.3d 1559 (Fed. Cir. 1997) (“An adequate written
description of a DNA . . . requires a precise definition, such as by structure, formula,
chemical name, or physical properties”) (internal quotation omitted). And while many
have thought that rule applied only to biotechnology, Ariad denies any such limitation.
Id. So it would seem that the court would be inclined to hold a software patent that only
described function, not structure, invalid under the written description doctrine.
 89. See, e.g., Inventio AG v. ThyssenKrupp Elevator Ams. Corp., 649 F.3d
1350, 1359–60 (Fed. Cir. 2011) (where “computing unit” connoted sufficiently definite
structure that it did not invoke Section 112(f)); LG Elecs., Inc. v. Bizcom Elecs., Inc., 453
F.3d 1364, 1372–73 (Fed. Cir. 2006), rev’d on other grounds sub nom. Quanta
Computer, Inc. v. LG Elecs., Inc., 553 U.S. 617 (2008) (holding a “claimed ‘control unit’
that comprised a ‘CPU’ and a ‘portioned memory system’ recited sufficiently definite
structure to perform the recited ‘controlling the communication unit’ function”); but see
Brown v. Baylor Healthcare Sys., 381 F. App’x. 981, 983–84 (Fed. Cir. 2010) (finding
that even if a “computing unit” is read to mean a computer, simply disclosing “a general
processor without more” is not enough “to perform the claimed function” and avoid the
application of Section 112(f)). The origins of this approach seem to be in the 1990s, when
the Federal Circuit decided In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994) (en banc). That
court held:

Alappat admits that claim 15 would read on a general purpose computer
programmed to carry out the claimed invention, but argues that this alone
also does not justify holding claim 15 unpatentable as directed to
nonstatutory subject matter. We agree. We have held that such programming
creates a new machine, because a general purpose computer in effect

928 WISCONSIN LAW REVIEW

result, software patents have circumvented the limits the 1952 Act places
on functional claiming. The result has been a plethora of software patents
claimed not on the basis of the technology the patentee actually
developed, but on the basis of the function that technology performs.
Those claims aren’t limited to or commensurate with what the patentee
invented, and they are accordingly the ones that patent plaintiffs tend to
assert against defendants whose systems bear little resemblance to what
the patentee actually invented.90 And as Christina Bohannan and Herbert
Hovenkamp note, under this functional claiming rubric the software
patents with the least actual technical content end up with the broadest
claims: “Its monopoly breadth is a function of its lack of technical
specification.”91

III. FUNCTIONAL CLAIMS AND THE TROUBLE WITH SOFTWARE PATENTS

A. The Problem with Software Patents

Software patents are widely acknowledged as creating a large
number of problems for the patent system. Part of the problem is that
there are so many software patents out there. Estimates vary widely, in
part because it’s hard to know what a software patent is, but there are
certainly hundreds of thousands of software patents in force.92 Because
computer products tend to involve complex, multicomponent technology,
any given product is potentially subject to a large number of patents. A
few examples: 3G wireless technology was subject to more than 7,000
claimed “essential” patents as of 2004; the number is doubtless much
higher now.93 WiFi is subject to hundreds and probably thousands of

becomes a special purpose computer once it is programmed to perform
particular functions pursuant to instructions from program software.

Id. at 1545. By concluding that a general-purpose computer was a new machine
whenever it was programmed with new instructions, the Federal Circuit opened the door
to treating a programmed computer as physical structure rather than as a functional claim
that had to be interpreted under Section 112(f).
 90. See Kevin Emerson Collins, Patent Law’s Functionality Malfunction and
Its Implications for the Problem of Overbroad, Functional Software Patents 14–17
(Wash. Univ. Sch. of Law Legal Studies Research Paper Series, Paper No. 13-2-1, 2013),
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2221950.
 91. CHRISTINA BOHANNAN & HERBERT HOVENKAMP, CREATION WITHOUT
RESTRAINT: PROMOTING LIBERTY AND RIVALRY IN INNOVATION 125 (2012).
 92. For discussion and sources, see Mark A. Lemley & Carl Shapiro, Patent
Holdup and Royalty Stacking, 85 TEX. L. REV. 1991, 2028–29 (2007).
 93. Id. at 2025–26. Information on patents essential to 3G wireless technology
is collected at http://www.3gpp2.org/, though that includes only patents disclosed to that

2013:905 Functional Claiming 929

claimed essential patents.94 And the problem is even worse than these
numbers suggest, since both 3G wireless technology and WiFi are not
themselves products but merely components that must be integrated into
a final product. Some industry experts have estimated that 250,000
patents go into a modern smartphone.95 Even nominally open-source
technologies may turn out to be subject to hundreds or thousands of
patents.96 The result is what Carl Shapiro has called a “patent thicket”—a
complex of overlapping patent rights that simply involves too many
rights to cut through.97

group. 3RD GENERATION PARTNERSHIP PROJECT 2, http://www.3gpp2.org/ (last visited
Sept. 18, 2013).
 94. See Ed Sutherland, WiMax, 802.11n Renew Patent Debate, WIFI PLANET
(Apr. 7, 2005), http://www.wi-fiplanet.com/columns/article.php/3495951.
 95. David Drummond, When Patents Attack Android, GOOGLE: OFFICIAL BLOG
(Aug. 3, 2011), http://googleblog.blogspot.com/2011/08/when-patents-attack-android.
html (statement of David Drummond, Chief Legal Officer at Google).
 96. Id. (discussing patents that threaten the open-source Android operating
system). Microsoft, Nokia, Apple, and others have all filed suit against makers of
Android phones, part of a crazy tangle of litigation. The full panoply of lawsuits is
depicted here:

http://www.flickr.com/photos/floorsixtyfour/5061246255/.
 97. Carl Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools,
and Standard Setting, in 1 INNOVATION POL’Y AND ECON. 119, 120 (2000). See also
Michael A. Heller & Rebecca S. Eisenberg, Can Patents Deter Innovation? The
Anticommons in Biomedical Research, 280 SCI. 698 (1998).

930 WISCONSIN LAW REVIEW

A related problem is the uncertainty associated with the meaning
and scope of a software patent. Unlike chemistry and biotechnology,
where we have a clear scientific language for delineating what a patent
claim does and doesn’t cover, there is no standard language for software
patents. Accordingly, no one can really know what a software patent
covers until the court has construed the language of the patent claims.98
And because the Federal Circuit reverses as many as 40 percent of claim
constructions,99 the parties really can’t know what a software patent
covers until the Federal Circuit has addressed the issue. Compounding
this problem, software patents in the 1980s and 1990s had to be
disguised as something else in order to be patentable subject matter,
which means that many early software patent claims were written to
obfuscate what was in fact inventive about the technology.100 Even
worse, patentees can often benefit from ambiguous patent claims by
twisting the language of the patent claim to cover something the inventor
never in fact had in mind at the time.101 Indeed, because computer
technology changes so quickly, and it takes four years to get a patent out
of the PTO on average, software patents are almost always asserted
against technology that is several product generations removed from the
patentee’s invention, compounding the problem of trying to understand

 98. Burk & Lemley, Fence Posts, supra note 15, at 1744–45.
 99. For empirical studies of the high reversal rate in Markman hearings, see, for
example, Christian A. Chu, Empirical Analysis of the Federal Circuit’s Claim
Construction Trends, 16 BERKELEY TECH. L.J. 1075 (2001); Kimberly A. Moore, Are
District Court Judges Equipped to Resolve Patent Cases?, 15 HARV. J.L. & TECH. 1, 2–4
(2001); Kimberly A. Moore, Markman Eight Years Later: Is Claim Construction More
Predictable?, 9 LEWIS & CLARK L. REV. 231, 231–34 (2005); David L. Schwartz,
Practice Makes Perfect? An Empirical Study of Claim Construction Reversal Rates in
Patent Cases, 107 MICH. L. REV. 223, 248–49 (2008). Cf. David L. Schwartz,
Pre-Markman Reversal Rates, 43 LOY. L.A. L. REV. 1073 (2010) (studying reversal rates
before district judges began expressly construing patent claims). Jonas Anderson and
Peter Menell have found in a more recent study that the claim construction reversal rate is
declining, but it is still over 25%. J. Jonas Anderson & Peter S. Menell, Informal
Deference: An Historical, Empirical, and Normative Analysis of Patent Claim
Construction, 108 NW. U. L. REV. (forthcoming 2012) (manuscript at 54), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2150360.
 100. See, e.g., Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation
in the Software Industry, 89 CALIF. L. REV. 1, 3–5, 7–9 (2001) (discussing this history).
Julie Cohen and I refer to the cases permitting software patents only if they pretended to
be something else as establishing “the doctrine of the magic words.” Id. at 9.
 101. Burk & Lemley, Fence Posts, supra note 15, at 1762 (“In case after case,
patentees claim to have invented electronic commerce, or multimedia, or video on
demand, or voice-over-Internet, or call centers, or any of a hundred other successful
technologies.”).

2013:905 Functional Claiming 931

the scope of software patents. The uncertainty problem is so bad that no
one can agree on what a software patent even is.102

It is not just that the scope and definition of software patents are
uncertain. Patents are probabilistic rights—what Carl Shapiro calls rights
to try to exclude.103 Many asserted software patents are invalid.
Empirical evidence suggests that nearly half of all asserted patents are
invalid;104 there is some reason to believe software patents may be more
likely than most to be invalid.105 That means that even if a
product-producing company could actually identify all of the thousands
of patents that might ultimately be held to read on that product, they
would be wasting their money in many cases if they tried to pay a license
fee for each of those patents.

Among product-producing companies, the number and uncertainty
of patents has created a patent “arms race” in which companies jockey to
obtain more and more patents not in order to enforce those patents, but to
protect themselves against the risk that competitors will enforce their
patents.106 The cost of this arms race can be staggering; in the last few

 102. For various efforts to define software patents, see, for example, John R.
Allison & Ronald J. Mann, The Disputed Quality of Software Patents, 85 WASH. U. L.
REV. 297, 304–08, 313–15 (2007); Robert Hunt & James E. Bessen, The Software
Patent Experiment, BUS. REV. (Fed. Reserve Bank of Phila.) 22, 24–26, 31 (2004),
available at http://www.phil.frb.org/files/br/brq304rh.pdf; Arti K. Rai, John R. Allison &
Bhaven N. Sampat, University Software Ownership and Litigation: A First Examination,
87 N.C. L. REV. 1519, 1529–33 (2009); James E. Bessen, A Generation of Software
Patents 2–3, 12–14 (Boston Univ. Sch. of Law, Working Paper No. 11-31, 2011),
available at http://ssrn.com/abstract=1868979; James E. Bessen & Robert M. Hunt, An
Empirical Look at Software Patents 4–5 (Fed. Reserve Bank of Phila. Working Paper No.
03-17/R, 2004), available at http://www.researchoninnovation.org/swpat.pdf [hereinafter
Bessen & Hunt, Empircal Look]. One evaluation found that these different methods of
defining software patents had less than 30% overlap. Id. at 11 (advocating one measure of
software patents, but finding that other measures differed from theirs as much as 74% of
the time). That is, even the experts cannot agree most of the time on whether a patent
even is a software patent.
 103. See Mark A. Lemley & Carl Shapiro, Probabilistic Patents, 19 J. ECON.
PERSP. 75, 93–95 (2005).
 104. John R. Allison & Mark A. Lemley, Empirical Evidence on the Validity of
Litigated Patents, 26 AIPLA Q.J. 185, 205 (1998) (Forty-six percent of litigated patent
claims invalid).
 105. See Allison et al., Patent Quality, supra note 12, at 707–09; Bessen & Hunt,
Empirical Look, supra note 102, at 3–6; but cf. Allison & Mann, supra note 102, at
315–17, 333–34 (noting that the objective characteristics of software patents suggest that
they are of high private value). High private value does not necessarily translate into
validity; Allison et al. found that the most-litigated patents were extremely valuable even
though most turned out to be invalid. Allison et al., Patent Quality, supra note 12, at 680.
 106. See Colleen V. Chien, From Arms Race to Marketplace: The Complex
Patent Ecosystem and Its Implications for the Patent System, 62 HASTINGS L.J. 297, 301,
339 (2010) [hereinafter Chien, Arms Race]; Colleen V. Chien, Of Trolls, Davids,

932 WISCONSIN LAW REVIEW

years companies in the smartphone industry have spent $15–20 billion
buying patents to use in defending themselves against each other, and
probably $1 billion just paying their lawyers.107 And small companies
must play the game too; by 2002 the overwhelming majority of software
startups found it necessary to obtain patents even before going
public108—which, given the four-year delay in the PTO, means that they
must have started filing patent applications early indeed.

Spending billions of dollars to buy your own patents is not enough
to protect an innovative software company from software patents. Patent
“trolls”—those who don’t practice their patented technology but sue
others who do109—are legion in the software industry. Software and
Internet patents are nearly ten times as likely to be enforced in court as
other types of patents.110 Empirical evidence suggests that the
most-litigated patents (a group responsible for more than 10 percent of
all patent assertions) are overwhelmingly software patents,

Goliaths, and Kings: Narratives and Evidence in the Litigation of High-Tech Patents, 87
N.C. L. REV. 1571, 1582, 1607 (2009) [hereinafter Chien, Of Trolls]. For a theoretical
account of multi-patent portfolios, see Gideon Parchomovsky & R. Polk Wagner, Patent
Portfolios, 154 U. PA. L. REV. 1 (2005).
 107. Google bought Motorola Mobility for $12.5 billion. Google to Acquire
Motorola Mobility: Combination Will Supercharge Android, Enhance Competition, and
Offer Wonderful User Experiences (Aug. 15, 2011), http://investor.google.com/
releases/2011/0815.html. A consortium of technology companies purchased Nortel’s
patent portfolio for $4.5 billion. Press Release, Research in Motion (RIM), RIM
Participates in Winning Bid for Nortel’s Patent Portfolio (July 1, 2011),
press.blackberry.com/press/2011/pressrelease-5098.html. Microsoft bought some patents
from AOL, and an exclusive license for other patents, in a deal worth over $1 billion.
Press Release, AOL Inc., AOL and Microsoft Announce $1.056 Billion Patent Deal (Apr.
9, 2012), corp.aol.com/2012/04/09/aol-and-microscoft-announce-1-056-billion-patent-
deal/. That is $18 billion, and does not include a number of smaller transactions under
$500 million. Even if we credit $6 billion of the Motorola purchase to its hardware
market, that’s still $12 billion just for reported smartphone patent purchases; there are
surely more that are confidential. In addition, my estimate based on conversations with
people close to the cases is that the parties in the ongoing smartphone litigation have
already spent at least $1 billion in legal fees, and the cases are far from over.
 108. Rosemarie H. Ziedonis, On the Apparent Failure of Patents: A Response to
Bessen and Meurer, 22 ACAD. MGMT. PERSP., 21, 26 fig.2. (2008). Ziedonis sees this as
evidence that startups benefited from software patents, but it seems more likely evidence
that they were caught up in the patent arms race. And Colleen Chien has shown that most
patent troll suits are brought against small, not large, companies. Colleen V. Chien,
Startups and Patent Trolls, 16 STAN. TECH. L. REV. (forthcoming 2013) (manuscript at 1),
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2146251 [hereinafter
Chien, Startups].
 109. See Allison et al., Patent Quality, supra note 12, at 683.
 110. John R. Allison et al., Patent Litigation and the Internet, 2012 STAN. TECH.
L. REV. 3, 4 (2012), http://stlr.stanford.edu/pdf/allison-patent-litigation.pdf [hereinafter
Allison et al., Internet].

2013:905 Functional Claiming 933

overwhelmingly filed by patent trolls, and overwhelmingly unsuccessful
in court.111 Only about 10 percent of software patents in the
most-asserted group actually prevail when the case goes to judgment.112
Nonetheless, patent trolls are big business, representing more than half of
all patent lawsuits in 2012 and an even higher percentage in the software
industry.113 They are mutating in form, with companies developing into
“patent aggregators” that collect tens of thousands of patents and demand
royalties to license the portfolio, suing those who don’t pay.114 And they
have more recently been joined by “patent privateers”—
product-producing companies who spin off patents or ally with trolls to
target a competitor with lawsuits.115 The result? According to one

 111. See Allison et al., Extreme Value or Trolls on Top? The Characteristics of
the Most-Litigated Patents, 158 U. PA. L. REV. 1 (2009) [hereinafter Allison et al.,
Extreme Value].
 112. Id. at 686–89 (“[T]he most-litigated—and putatively most valuable—
patents win in court only 10.7% of the time.”); see also Allison et al., Internet, supra note
110, at 4 (stating win rate of Internet patents was extremely low).
 113. Cf. Allison et al., Internet, supra note 110, at 4 (finding small entities were
much more likely than large entities to enforce Internet patents). Credible estimates of the
extent of patent troll litigation are hard to come by. Colleen Chien found several years
ago that trolls filed 19% of all patent suits and targeted 36% of all defendants. Chien, Of
Trolls, supra note 106, at 1604. But that number surely understates the role of trolls in the
software industry because trolls are most prevalent in high-tech industries (and virtually
unheard of in industries like pharmaceuticals). See Allison et al., Extreme Value, supra
note 111, at 3 (noting that trolls own most of the most-litigated patents); Allison et al.,
Patent Quality, supra note 12, at 700–02 (finding that the most-litigated cases name
substantially more defendants); James C. Pistorino & Susan J. Crane, 2011 Trends in
Patent Case Filings: Eastern District of Texas Continues to Lead until American Invents
Act Is Signed, 83 PAT., TRADEMARK, & COPYRIGHT J. (BNA) 710 (2012) (suits filed in the
Eastern District of Texas named many more defendants per case than suits elsewhere).
 More recently, Lex Machina has found that 40% of the suits filed in 2011 were by
“patent assertion entities”—companies primarily in the business of bringing patent suits.
LEX MACHINA, http://www.lexmachina.com (last visited Sept. 8, 2013) (on file with
author). Colleen Chien has found a dramatic increase in the number of patent troll suits,
to 61% of all cases See Colleen V. Chien, Presentation: Patent Assertion Entities, 23
(Dec. 10, 2012), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2187314. Trolls are also behind the claims against 50% of the defendants in the
International Trade Commission (ITC), even though the ITC nominally has a requirement
that there be a domestic industry protected by the patent. See Colleen V. Chien & Mark
A. Lemley, Patent Holdup, the ITC, and the Public Interest, 98 CORNELL L. REV. 1, 17
(2012). Most recently, Chien and Karkhanis found that 82% of software industry suits are
brought by trolls, compared with 30% of non-software suits. Chien & Karkhanis, supra
note 65, at 7.
 114. See Tom Ewing & Robin Feldman, The Giants among Us, 2012 STAN.
TECH. L. REV. 1, 1 (2012), http://stlr.stanford.edu/pdf/feldman-giants-among-us.pdf
(documenting the behavior of one such patent aggregator, Intellectual Ventures).
 115. See Tom Ewing, Indirect Exploitation of Intellectual Property Rights by
Corporations and Investors, 4 HASTINGS SCI. & TECH. L.J. 1, 5 (2012).

934 WISCONSIN LAW REVIEW

estimate, trolls cost the economy $500 billion over the last twenty years,
mostly in the information technology industry.116 Other reports suggest
that patent trolls inhibit innovation at the firms they sue.117

The combination of a thicket of hundreds of thousands of patents,
the prevalence of patent trolls and their kin, the invalidity of many of
those patents, and uncertainty as to what the patents actually cover means
that companies in the software industry largely ignore patents unless and
until they are threatened with suit.118 But if a software product is
successful, its maker can expect to be hit with dozens of suits and
hundreds of threat letters from patent owners who come out of the
woodwork and seek a royalty from that product.119 Until recently, each of
those patentees could credibly threaten to shut down the defendant’s
product altogether, even if the patent covered only a small fraction of the
product. Even after the Supreme Court’s decision in eBay, Incorporated
v. MercExchange LLC120 reduced the risk of injunction-related holdup,121

 116. James E. Bessen et al., The Private and Social Costs of Patent Trolls 17
(Boston Univ. Sch. of Law, Working Paper No. 11-45, 2011), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1930272. While a functioning patent
market might be a desirable thing, see Robert P. Merges, The Trouble with Trolls:
Innovation, Rent-Seeking, and Patent Law Reform, 24 BERKELEY TECH. L.J. 1583, 1599
(2009), there is no reason to believe patent trolls are in fact engaged in much legitimate
technology transfer.
 117. Catherine Tucker, Patent Trolls and Technology Diffusion 4 (Tilburg Law
& Econ. Ctr., Discussion Paper No. 2012-030), available at http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=2136955.
 118. For evidence and discussion, see Mark A. Lemley, Ignoring Patents, 2008
MICH. ST. L. REV. 19, 21–22. See also Rebecca S. Eisenberg, Patent Costs and
Unlicensed Use of Patented Inventions, 78 U. CHI. L. REV. 53, 54 (2011) (arguing that
ignoring patents gives some freedom to technology companies to operate, but that they
would be unwise to rely too heavily on forbearance by patent owners).
 119. To take just a few examples, Lex Machina data shows that as of May 1,
2012, Apple had been named in 298 patent lawsuits over the last dozen years, Microsoft
in 269 patent lawsuits, Google in 151, Yahoo! in 91, Oracle in 58, Facebook in 56, SAP
in 38, Yelp in 9, and Twitter in 8. LEX MACHINA, http://www.lexmachina.com (last
visited Sept. 8, 2013) (on file with author). While some of these companies, notably
Apple and Oracle, are plaintiffs in some suits, the overwhelming majority of these cases
involve the named companies as patent infringement defendants, and the majority are
filed by patent trolls. Lemley et al. show in forthcoming work that filing an IPO attracts
an average of eight patent lawsuits. Mark A. Lemley, Ziv Shafir, & Durgesh Saraph,
“Because That’s Where the Money Is”: IPOs and Patent Suits (vaporware 2013)
(unpublished manuscript) (on file with author).
 120. 547 U.S. 388 (2006).
 121. Id. at 394. eBay didn’t eliminate the injunction-based holdup problem,
however, even for suits by patent trolls. Trolls increasingly have turned to the ITC, an
administrative agency that has the authority to exclude infringing products from entering
the United States. And the ITC is not subject to eBay Inc.’s limits on injunctive relief. For
discussion of the increasing use of the ITC by trolls, and what might be done about it, see

2013:905 Functional Claiming 935

the fact that patentees have been able to seek large damage awards
disproportionate to the value of the patented technology has created a
“royalty stacking” problem.122

Software patents, then, have created a large number of problems for
the industry, particularly for the most innovative and productive
companies.123 At the same time, software patents are arguably less
necessary to spur innovation than are patents in other industries, such as
pharmaceuticals or biotechnology. Software innovation is less costly
than innovation in the life sciences.124 Copyright also protects software
and prevents copying by others.125 Network effects may allow innovators
to capture significant returns even absent IP protection.126 And the
existence of a vibrant open source community suggests that innovation
can flourish in software absent patent protection.127 If Michael
Abramowicz and John Duffy are correct that we should only grant

Colleen V. Chien & Mark A. Lemley, Patent Holdup, the ITC, and the Public Interest, 98
CORNELL L. REV. 1 (2012); Colleen V. Chien, Protecting Domestic Industries at the ITC,
28 SANTA CLARA COMP. & HIGH TECH. L.J. 169 (2011).
 122. Lemley & Shapiro, supra note 92, at 1993–94.
 123. See Chien, Startups, supra note 108, at 1 (noting that trolls mostly target
small companies).
 124. DAN L. BURK & MARK A. LEMLEY, THE PATENT CRISIS AND HOW THE
COURTS CAN SOLVE IT 38–41 (2009) [hereinafter BURK & LEMLEY, PATENT CRISIS]
(citing evidence on relative cost of development).
 125. 17 U.S.C. § 102(a) (2006).
 126. See, e.g., CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES: A
STRATEGIC GUIDE TO THE NETWORK ECONOMY, NETWORK RULES 199–200 (1999); Mark
A. Lemley & David McGowan, Legal Implications of Network Economic Effects, 86
CAL. L. REV. 479, 491–92 (1998); see also Joseph Farrell & Garth Saloner,
Standardization, Compatibility, and Innovation, 16 RAND J. ECON. 70, 70 (1985); Michael L.
Katz & Carl Shapiro, Network Externalities, Competition, and Compatibility, 75 AM. ECON.
REV. 424, 424 (1985).
 127. For discussion of the significance of open source software, see, for
example, YOCHAI BENKLER, THE WEALTH OF NETWORKS 63–67 (2006); ERIC S.
RAYMOND, THE CATHEDRAL AND THE BAZAAR: MUSINGS ON LINUX AND OPEN SOURCE BY
AN ACCIDENTAL REVOLUTIONARY 64–67 (1999); Josh Lerner & Jean Tirole, Some Simple
Economics of Open Source, 50 J. INDUS. ECON. 197, 212–15 (2002) (explaining the
benefits programmers receive from participating in open source software development).
On open source and its implications for law, see, for example, Yochai Benkler, Coase’s
Penguin, or, Linux and The Nature of the Firm, 112 YALE L.J. 369, 445–46 (2002);
James E. Bessen, Open Source Software: Free Provision of Complex Public Goods, in
THE ECONOMICS OF OPEN SOURCE SOFTWARE DEVELOPMENT 57, 79–80 (Jürgen Bitzer
& Philipp J. H. Schröeder, eds., 2006); Michele Boldrin & David K. Levine, Market
Structure and Property Rights in Open Source Industries, 30 WASH. U. J.L. & POL’Y 325,
(2009); David McGowan, Legal Implications of Open-Source Software, 2001 U. ILL. L.
REV. 241; Greg R. Vetter, Commercial Free and Open Source Software: Knowledge
Production, Hybrid Appropriability, and Patents, 77 FORDHAM L. REV. 2087, 2129–31
(2009).

936 WISCONSIN LAW REVIEW

patents that encourage innovation we wouldn’t have gotten otherwise,128
software seems a poor candidate for patent protection.

The result has been that economic evidence suggests software
patents impose significant costs on society. Jim Bessen and Mike Meurer
estimate the social cost of patent trolls at an aggregate of $500 billion.129
Elsewhere, the same authors find that patents in the information
technology industry have a net negative effect on market value of
companies in the industry.130 While I have suggested elsewhere that trolls
are a symptom of the problem, not the problem itself,131 they are clearly
evidence of a software patent system that has real problems.

B. Proposals to Reform Software Patents

 In response to these problems, commentators have proposed
several solutions to the problem of software patents.

1. ABOLISHING SOFTWARE PATENTS

A number of commentators have called for the abolition of software
patents.132 Dan Burk and I have argued elsewhere that such a remedy is

 128. Michael Abramowicz & John F. Duffy, The Inducement Standard of
Patentability, 120 YALE L.J. 1590, 1597–98 (2011). They are surely right as an abstract
economic matter, though the idea seems impossible to implement in practice. But cf.
Jonathan M. Barnett, Intellectual Property as a Law of Organization, 84 S. CAL. L. REV.
785, 808 (2011) (arguing that companies will substitute for the absence of patents with
potentially inefficient organizational changes); Dan L. Burk & Brett H. McDonnell, The
Goldilocks Hypothesis: Balancing Intellectual Property Rights at the Boundary of the
Firm, 2007 U. ILL. L. REV. 575, 617.
 129. Bessen et al., supra note 116, at 20, 32 tbl.3 (finding that little of this
money is a transfer to patent trolls; most is a pure welfare loss).
 130. JAMES E. BESSEN & MICHAEL MEURER, PATENT FAILURE: HOW JUDGES,
BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK 137 (2008).
 131. See Mark A. Lemley & A. Douglas Melamed, Missing the Forest for the
Trolls, 113 COLUM. L. REV. (forthcoming 2013), available at http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=2269087.
 132. See, e.g., League for Programming Freedom, Software Patents: Is This the
Future of Programming?, DR. DOBB’S J., Nov. 1990, at 56; Brian J. Love, Why
Patentable Subject Matter Matters for Software, 81 GEO. WASH. L. REV. ARGUENDO 1
(2012), http://www.gwlr.org/wp-content/uploads/2012/09/Love_Arguendo_81_1.pdf
(arguing that while Section 101 exclusion is problematic, it is “virtually the only
defensive mechanism left”); Alan Newell, Response: The Models Are Broken, The
Models Are Broken!, 47 U. PITT. L. REV. 1023, 1025 (1986); Pamela Samuelson, Benson
Revisited: The Case against Patent Protection for Algorithms and Other Computer
Program-Related Inventions, 39 EMORY L.J. 1025, 1135–36 (1990); Joshua D. Sarnoff,
Patent-Eligible Inventions after Bilski: History and Theory, 63 HASTINGS L.J. 53,

2013:905 Functional Claiming 937

overbroad; there are in fact real inventions in the software space that
deserve patent protection.133 And the line-drawing problems mentioned
above mean that any effort to define a class of software exempt from
patenting is doomed to be enmeshed in endless self-serving disputes over
whether a particular invention is or isn’t software.134 Indeed, it may take
us back to the bad old days of software patents that pretended to be
something else. In any event, with hundreds of thousands of software
patents issued over the past twenty-five years, it seems impractical to
think Congress will simply ban software patents (though recent case law

119–20 (2011). But see Donald S. Chisum, The Patentability of Algorithms, 47 U. PITT.
L. REV. 959, 1014–15 (1986); Mark A. Lemley et al., Life after Bilski, 63 STAN. L. REV.
1315, 1326–27 (2011) [hereinafter Lemley, et al., Life after Bilski]; Robert P. Merges,
Software and Patent Scope: A Report from the Middle Innings, 85 TEX. L. REV. 1627,
1656–57 (2007); Michael Risch, Everything Is Patentable, 75 TENN. L. REV. 591, 622
(2008).
 In Bilski v. Kappos, 130 S. Ct. 3218 (2010), four Justices would have drawn a
similar line banning the patenting of business methods. Id. at 3232 (Stevens, J.,
concurring). See also Peter S. Menell, Forty Years of Wandering in the Wilderness and
No Closer to the Promised Land: Bilski’s Superficial Textualism and the Missed
Opportunity to Return Patent Law to Its Technology Mooring, 63 STAN. L. REV. 1289,
1312–13 (2011); John R. Thomas, The Patenting of the Liberal Professions, 40 B.C. L.
REV. 1139, 1145–47 (1999).
 133. BURK & LEMLEY, PATENT CRISIS, supra note 124, at 157–58. See also
ADAM B. JAFFE & JOSH LERNER, INNOVATION AND ITS DISCONTENTS: HOW OUR BROKEN
PATENT SYSTEM IS ENDANGERING INNOVATION AND PROGRESS, AND WHAT TO DO ABOUT
IT 198 (2004) (arguing against industry-specific patent rules).
 134. BURK & LEMLEY, PATENT CRISIS, supra note 124, at 157–58; John F. Duffy,
Rules and Standards on the Forefront of Patentability, 51 WM. & MARY L. REV. 609, 614
(2009) (stating that when it comes to patentable subject matter, “rules always fail”).
Others have identified the particular difficulties courts and commentators have had in
defining software patents. See, e.g., Reinier B. Bakels, Are Software Patents Something
Special?, in BIOTECHNOLOGY AND SOFTWARE PATENT LAW: A COMPARATIVE REVIEW OF
NEW DEVELOPMENTS 131, 131–34 (Emanuela Arezzo & Gustavo Ghidini eds. 2011). To
consider just one example of the line-drawing problem, take the Toyota Prius. Its hybrid
gasoline-electric engine works because the car has a sophisticated controller that decides
when to draw power from the gasoline engine and when from the battery. That controller
is a piece of software. Is the hybrid car engine a “software patent”? But see John M.
Golden, Patentable Subject Matter and Institutional Choice, 89 TEX. L. REV. 1041, 1111
(2011) (arguing for vesting significant power to limit patentable subject matter with the
PTO).
 John Allison and Starling Hunter have argued that the line-drawing problems are so
great that trying to eliminate software patents would “prove largely futile and possibly
even counterproductive—futile because skilled patent attorneys can often draft
applications so as to opt out of a predefined category, and counterproductive because of
the increased transaction costs associated with tortuous drafting.” John R. Allison &
Starling D. Hunter, On the Feasibility of Improving Patent Quality One Technology at a
Time: The Case of Business Methods, 21 BERKELEY TECH. L.J. 729, 736 (2006); John R.
Allison & Emerson H. Tiller, The Business Method Patent Myth, 18 BERKELEY TECH. L.J.
987, 1081–82 (2003).

938 WISCONSIN LAW REVIEW

on patentable subject matter may have a similar effect; more on that
below).135

2. WEEDING OUT BAD PATENTS

Others have suggested that we can solve the problem by weeding
out bad software patents, often by beefing up examination at the PTO,
but sometimes by changing the legal standards so that courts are more
likely to find a software patent obvious.136 There is no question that there
are bad software patents out there, and invalidating them is a social
good.137 But as I have argued elsewhere, it is not clear that we want to

 135. See infra notes 230–32 and accompanying text.
 136. See, e.g., BESSEN & MEURER, supra note 130, at
247–48 (arguing for higher obviousness standards to reduce the flood of patents); JAFFE
& LERNER, supra note 133, at 170–82 (arguing for efforts to improve patent quality); Julie
E. Cohen, Reverse Engineering and the Rise of Electronic Vigilantism: Intellectual
Property Implications of “Lock-Out” Programs, 68 S. CAL. L. REV. 1091, 1179 (1995);
Robert P. Merges, As Many as Six Impossible Patents before Breakfast: Property Rights
for Business Concepts and Patent System Reform, 14 BERKELEY TECH. L.J. 577, 589–90
(1999) (discussing the inadequacies of prior art searches in software); Andrew Nieh,
Software Wars: The Patent Menace, 55 N.Y.L. SCH. L. REV. 295, 324–25 (2010–2011);
Simson L. Garfinkel, Patently Absurd, WIRED, July 1994, at 104, 142. One commentator
has described this approach as saying, not that software patents are bad, but that “bad
software patents are bad.” U.S. PATENT AND TRADEMARK OFFICE, PUBLIC HEARING ON
USE OF THE PATENT SYSTEM TO PROTECT SOFTWARE-RELATED INVENTIONS 56 (Jan. 26 &
27, 1994) (statement of Ronald S. Laurie).
 137. One study finds that at least 27% of all patents would be invalid if litigated.
Shawn P. Miller, Where’s the Innovation? An Analysis of the Quantity and Qualities of
Anticipated and Obvious Patents 2 (Feb. 10, 2012) (unpublished manuscript) available at
http://ssrn.com/abstract=2029263. In fact, that probably understates the problem. Nearly
half of those patents actually litigated are held invalid. John R. Allison & Mark A.
Lemley, Empirical Evidence on the Validity of Litigated Patents, 26 AIPLA Q.J. 185, 205
(1998). And while some have suggested that the high invalidity rate is a function of
litigation selection effects, see George L. Priest & Benjamin Klein, The Selection of
Disputes for Litigation, 13 J. LEGAL STUD. 1, 5 (1984), that argument is both theoretically
unconvincing and empirically untrue in patent law. On the theory, see Daniel Kessler et
al., Explaining Deviations from the Fifty-Percent Rule: A Multimodal Approach to the
Selection of Cases for Litigation, 25 J. LEGAL STUD. 233 (1996); Steven Shavell, Any
Frequency of Plaintiff Victory at Trial is Possible, 25 J. LEGAL STUD. 493, 498–501
(1996); Jason Rantanen, Why Priest-Klein Cannot Apply to Individual Issues in Patent
Cases (U. Iowa Legal Studies Research Paper No. 12-15, 2013), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2132810. As for evidence, see Mark
A. Lemley, The Fractioning of Patent Law, in INTELLECTUAL PROPERTY AND THE
COMMON LAW 504, 506 n.14 (Cambridge University Press 2013) (“[E]very empirical
study of patent law refutes it; each shows systematic variation from a 50% win rate.”).
 For arguments that litigants have insufficient incentive to challenge bad patents
because invalidation of a patent benefits their competitors as well as themselves, see
Joseph Farrell & Robert P. Merges, Incentives to Challenge and Defend Patents: Why

2013:905 Functional Claiming 939

spend the money it would take to weed out every bad patent at the PTO
because most of those patents have no ill effects.138

More important, while we could likely do better at weeding out bad
patents in court, doing so would likely come at a cost, both in terms of
legal fees and court time and in increasing the risk of wrongly
invalidating legitimate patents.139 In any event, weeding out bad patents
in court would alleviate only some of the problems with software patents.
While we wouldn’t need to worry about erroneous injunctions or damage
awards, companies would still face thousands of patents of uncertain
validity and the need to pay millions of dollars in legal fees to invalidate
each asserted patent.140 And the software patents arms race has
developed to such an extent that weeding out 50 percent, or even 90
percent, of software patents might still leave a significant thicket of
broad patents with which innovators must contend. Smartphone
companies, for instance, would likely take little solace in being told that
they need only clear rights for 25,000 essential patents, not 250,000.

Finally, it is worth emphasizing that there are real technical
inventions in software, just as in any other innovative area of technology.
It is true that software patents today are invalidated more often than other
types of patents, but that is a consequence of the remarkable breadth we
have given those patent claims by allowing functional claiming. Many of
those patents have at their heart real technical inventions.141 Even if the
law should treat almost all broad functional claims as obvious, that
doesn’t mean those inventors don’t deserve a narrower patent
commensurate with what they actually achieved.

Litigation Won’t Reliably Fix Patent Office Errors and Why Administrative Patent
Review Might Help, 19 BERKELEY TECH. L.J. 943, 958 (2004); Joseph Scott Miller,
Building a Better Bounty: Litigation-Stage Rewards for Defeating Patents, 19 BERKELEY
TECH. L.J. 667, 668–73 (2004); John R. Thomas, Collusion and Collective Action in the
Patent System: A Proposal for Patent Bounties, 2001 U. ILL. L. REV. 305, 332–33.
 138. Mark A. Lemley, Rational Ignorance at the Patent Office, 95 NW. U. L.
REV. 1495, 1496–97 (2001). For a discussion of how the PTO might better target its
resources on important patents, see Mark A. Lemley, Fixing the Patent Office, in 13
INNOVATION POLICY AND THE ECONOMY 83 (2013).
 139. For an argument that most efforts to improve patent quality are likely to be
ineffective or even counterproductive, see R. Polk Wagner, Understanding
Patent-Quality Mechanisms, 157 U. PA. L. REV. 2135, 2163–65 (2009).
 140. AIPLA, REPORT OF THE ECONOMIC SURVEY 2013, at 34 (reporting that a
high-stakes patent case costs a median of $3 million per side in legal fees if it settles after
discovery and $5.5 million if the case goes to trial).
 141. See Jeanne C. Fromer, The Layers of Obviousness in Patent Law, 22 HARV.
J.L. & TECH. 75, 96 (2008) (noting that implementing an idea in software is complex
even once the idea is known) [hereinafter Fromer, Layers].

940 WISCONSIN LAW REVIEW

3. DEFINING THE SCOPE OF SOFTWARE PATENTS

Still others, including Bessen and Meurer, have suggested that the
problem is the vagueness in the boundaries of software patents.142 They
argue that if we were clearer in indicating what software patents actually
covered, people would be able to tell in advance which patents they
needed to license.143 As Bessen and Meurer put it, “if you can’t tell the
boundaries, then it ain’t property.”144 They argue for a combination of
limits on late claiming through patent “continuations” and a more robust
effort to invalidate patents for “indefiniteness.”145

Bessen and Meurer are surely correct that patents suffer from notice
and boundary problems and that software patents suffer more than
most.146 They are also right to say that software patents are
fundamentally unlike real property because the boundary disputes are so
prevalent.147 But it is unrealistic to think that we can somehow give
software patents clear boundaries and make IP “like” real property. The
problems are too fundamental.148 They include:

• the process of peripheral claiming—trying to define a group

of things (both known and as yet unknown) in words;149

 142. BESSEN & MEURER, supra note 130, at 201–03.
 143. See id. at 8–11.
 144. Id. at 46. See also Peter S. Menell & Michael J. Meurer, Notice Failure and
Notice Externalities, J. LEGAL ANALYSIS (forthcoming 2013), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1973171.
 145. BESSEN & MEURER, supra note 130, at 25–26. On continuations and their
problems, see Mark A. Lemley & Kimberly A. Moore, Ending Abuse of Patent
Continuations, 84 B.U. L. REV. 63, 71–83 (2004). On definiteness, governed by 35
U.S.C. § 112(b), see BESSEN & MEURER, supra note 130, at 235–42.
 146. See Love, supra note 132. Shawn Miller finds that the Federal Circuit is
much more likely to reverse claim construction decisions involving software than other
areas of technology, suggesting that the understanding of software claim boundaries is
much less certain than in other fields. Shawn P. Miller, Do ‘Fuzzy’ Software Patent
Boundaries Explain High Claim Construction Reversal Rates? 9 (Feb. 7, 2013) (working
paper 2013), available at http://ssrn.com/abstract=2139146.
 147. For an explanation of why patents are not “property” in any meaningful
sense, see Mark A. Lemley, Property, Intellectual Property, and Free Riding, 83 TEX. L.
REV. 1031 (2005) [hereinafter Lemley, Free Riding].
 148. See Emily Michiko Morris, Res or Rules? Patents and the (Uncertain)
Rules of the Game, 18 MICH. TELECOMM. & TECH. L. REV. 481, 494 (2012).
 149. Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722, 731
(2002) (“This conversion of machine to words allows for unintended idea gaps which
cannot be satisfactorily filled. Often the invention is novel and words do not exist to
describe it. The dictionary does not always keep abreast of the inventor. It cannot. Things
are not made for the sake of words, but words for things.”) (quoting Autogiro Co. of Am.

2013:905 Functional Claiming 941

• the process of claim construction, in which lawyers take

words that have been substituted for technological concepts
and replace them with other, theoretically clearer words;150

• the four-year average delay in issuing a patent;151 imagine
being unable to know for several years whether you were
building on land you owned or not;

• the practice of continuation applications, which permit

applicants to add to or change the scope of their claims at
any time during the twenty-year patent term;152 and

• the sheer number of patent rights covering software. Real

property lawyers tend to deal with boundary disputes
between two or three parties. In an extreme case, someone
who wants to acquire a large parcel of land may have to
deal with dozens of different landholders. They don’t have
to deal with 250,000 patents owned by perhaps a thousand
different entities;153

Bessen and Meurer offer a number of useful suggestions to deal at

the margins with some of the uncertainties of software patents.154 But at

v. United States, 384 F.2d 391, 397 (Ct. Cl. 1967)). For discussion of the inherent
indeterminacy of this process, see Burk & Lemley, Fence Posts, supra note 15, at
1748–61; Lefstin, supra note 22, at 1204–10.
 150. Burk & Lemley, Fence Posts, supra note 15, at 1744–46. For discussion of
the ensuing debates over the meaning of the words used to construe the original words of
the claim—so-called “meta-construction”—see Kristen Osenga, Linguistics and Patent
Claim Construction, 38 RUTGERS L.J. 61, 69–70 (2006).
 151. Dennis Crouch, Total Patent Application Pendency, PATENTLY-O (Mar. 18,
2012, 9:43 AM), http://www.patentlyo.com/patent/2012/03/total-patent-application-
pendency.html (“[The] average and median pendency is just under five years.”). The
number has increased over the past fifteen years; in 1998 the average delay was 2.77
years. John R. Allison & Mark A. Lemley, Who’s Patenting What? An Empirical
Exploration of Patent Prosecution, 53 VAND. L. REV. 2099, 2118 (2000).
 152. Lemley & Moore, supra note 145, at 66–69.
 153. Indeed, Christina Mulligan and Timothy Lee estimate that there are “around
twenty-four billion new [software] patent-firm pairs each year that could produce
accidental infringement,” and that to hire a lawyer to spend even ten minutes reviewing
each patent for infringement would require two million lawyers working full time on
clearing software patent rights. Christina Mulligan & Timothy B. Lee, Scaling the Patent
System, 68 N.Y.U. ANN. SURV. AM. L. 289, 304–05 (2012).
 154. For a more systematic approach to improving notice, while recognizing that
some uncertainty is inevitable, see generally Harry Surden, Efficient Uncertainty in
Patent Interpretation, 68 WASH. & LEE L. REV. 1737 (2011).

942 WISCONSIN LAW REVIEW

the end of the day, the problem is that there are simply too many patents
owned by too many people that claim to be essential to practicing
modern computer technology. If there are too many patent rights that are
too broad, making their boundaries clearer will only show us the
magnitude of the problem we face; it won’t solve that problem for us.

4. AN INDEPENDENT INVENTION DEFENSE

Another possibility is to change the rule that independent invention
is not a defense to patent infringement. Unlike copyright and trade secret
law, patent rights are enforceable against anyone who makes a product
incorporating the patented invention, whether or not they got the idea
from the patentee.155 A number of scholars have proposed changing this
rule.156 Eliminating cases filed against independent inventors would have
a major effect on the patent system because evidence suggests that
independent inventors represent roughly 90 percent of those sued for
patent infringement today.157 And it would have a particular effect on
patent trolls because they do not make products that can be copied in the
marketplace and rarely engage in actual transfer of technology to
product-producing companies.158 But an independent invention defense
works best if the patents in question are technical so that it is easy for a
court to tell whether the accused infringer had a research trail that led to
her developing the same idea independently. It would be much harder to
tell whether functional claims are copied. For example, suppose Apple
sues Samsung for implementing “swipe-to-unlock” functionality on its
smartphones.159 If the patent claim covers a particular algorithm, it
should be straightforward to find out whether Samsung actually
implemented that algorithm and, if so, what the process of developing it

 155. Mark A. Lemley, Should Patent Infringement Require Proof of Copying?,
105 MICH. L. REV. 1525, 1525 (2007).
 156. E.g., Samson Vermont, Independent Invention as a Defense to Patent
Infringement, 105 MICH. L. REV. 475 (2006) [hereinafter Vermont, Independent
Invention]; Samson Vermont, The Angel Is in the Big Picture: A Response to Lemley, 105
MICH. L. REV. 1537 (2007); Carl Shapiro, Prior User Rights, 96 AM. ECON. REV. 92, 95
(2006).
 157. See Christopher A. Cotropia & Mark A. Lemley, Copying in Patent Law, 87
N.C. L. REV. 1421, 1443 (2009).
 158. For an argument that patentees should have to practice their products to be
entitled to enforce them see, for example, Christopher A. Cotropia, The Folly of Early
Filing in Patent Law, 61 HASTINGS L.J. 65 (2009); see also Ted Sichelman,
Commercializing Patents, 62 STAN. L. REV. 341 (2010).
 159. It has. Jury Verdict, Apple, Inc. v. Samsung Elec., Co. (N.D. Cal. Aug. 24,
2012) (No. 11-CV-01846-LHK).

2013:905 Functional Claiming 943

looked like.160 But if the patent claim covers the concept itself, figuring
out whether someone at Samsung had the same basic idea or instead
learned it by observing Apple’s phone will be much harder. So whether
or not an independent invention defense is a good idea in general,161 it is
hard to implement in a world of functional software claims.

IV. FUNCTIONAL CLAIMING AND THE SOFTWARE PATENT THICKET

None of the ideas I discussed in the last Part are likely to solve the
problems we face with software patents. Some of the ideas are
unrealistic, some come with unintended consequences, and all of them
ignore a key element of the problem: the fact that we allow patentees to
claim functions, not implementations. It is broad functional claiming that
leads to assertions that every part of a complex technology product is
patented, often by many different people at the same time. It is broad
functional claiming that puts stars in the eyes of patent plaintiffs, who
can demand huge royalties on the theory that there simply is no other
way to implement the technology they have patented. And it is broad
functional claiming that makes most of the resulting patents invalid,
since even if ten programmers developed ten different algorithms to
solve a problem, only one of them could be the first to solve the problem
at all.

In this Part, I explain how a simple application of existing legal
doctrine can end broad functional claiming of software. I also address
objections and complications to treating functional software claims like
other types of functional patent claims.

A. Taking Section 112(f) Seriously

Fortunately, there is no need to rewrite the patent law or
retroactively invalidate tens of thousands of software patents in order to
address the problem of functional claiming. All we need to do is take
seriously the law already on the books.

While we refer to functional claiming under Section 112(f) as
“means-plus-function” claiming, after a common language format
(“means for doing x”) that has been held to invoke that section, what the
statute actually says is instructive:

 160. See Vermont, Independent Invention, supra note 156 (arguing for the
adoption of an independent invention defense to patent infringement, and suggesting that
courts are a good forum for resolving such disputes).
 161. I’ve expressed some concerns elsewhere. Lemley, supra note 155, at
1527–32.

944 WISCONSIN LAW REVIEW

An element in a claim for a combination may be expressed as a
means or step for performing a specified function without the
recital of structure, material, or acts in support thereof, and
such claim shall be construed to cover the corresponding
structure, material, or acts described in the specification and
equivalents thereof.162

The question in applying Section 112(f), then, is not whether the
language is written in the form “means for doing x.” It is whether a
particular claim element is expressed “as a means or step for performing
a specified function without the recital of structure, material, or acts in
support thereof.” If so, the second phrase of Section 112(f) applies, and
the claim is to be construed by reference to the specification.

The Federal Circuit has said that use of the term “means” creates a
presumption that a claim element is a means-plus-function element to
which Section 112(f) applies, and the absence of that term creates the
opposite presumption.163 But the presumption can be rebutted either by
evidence that the element in question isn’t functional164 or that the claim
element contains a sufficiently “definite structure” to avoid invoking the
statute.165 At least in theory, then, deciding whether to turn to the
specification to limit an allegedly means-plus-function claim element
requires some inquiry into the claim language and whether it would be
understood by scientists in the field to recite known structure.166 If it
does, the structure itself is a limitation, and there is no need to turn to the
patent specification to find that limitation.167

In practice, however, the software cases draw a pretty formalistic
line between claims that use the “means for doing x” language and those
that don’t.168 On the one hand, when software patents are actually written

 162. 35 U.S.C. § 112(f) (2012).
 163. See, e.g., York Prods., Inc. v. Central Tractor Farm & Family Ctr., 99 F.3d
1568, 1574 (Fed. Cir. 1996).
 164. See, e.g., Rodime PLC v. Seagate Tech., Inc., 174 F.3d 1294, 1302 (Fed.
Cir. 1999) (“[A] claim element that uses the word ‘means’ but recites no function
corresponding to the means does not invoke” Section 112(f).).
 165. Cole v. Kimberly-Clark Corp., 102 F.3d 524, 531 (Fed. Cir. 1996).
 166. Watts v. XL Sys., 232 F.3d 877, 880–81 (Fed. Cir. 2000).
 167. That inquiry can be difficult. Compare Cole, 102 F.3d at 531 (concluding
that “perforation means for tearing” was not a means-plus-function limitation because
perforations were the structure for accomplishing the tearing function), with Unidynamics
Corp. v. Automatic Prods. Int’l, 157 F.3d 1311 (Fed. Cir. 1998) (concluding that “spring
means tending to keep the door closed” was a means-plus-function limitation because the
term “spring” was part of the function, not itself a definite structure).
 168. For criticism that the Federal Circuit takes an excessively formalist view in
its jurisprudence, preferring bright lines to more flexible standards, see, for example,
BURK & LEMLEY, PATENT CRISIS, supra note 124, ch. 7; Timothy R. Holbrook, The

2013:905 Functional Claiming 945

using “means for doing x” language, the Federal Circuit has been quite
strict about requiring evidence of real computer programming in the
specification. Software patents that use means-plus-function language
but do not detail actual algorithms implementing those functional steps
are invalid for indefiniteness.169 And courts are willing to ignore
linguistic games and focus on what is really at issue, treating an
invention that occurs primarily in software as requiring disclosure of
software algorithms, not just computer hardware.170 Dealertrack
Incorporated v. Huber171 is instructive:

A general purpose computer can perform the claimed function
of “executing a computer program which implements and
controls credit application processing and routing” only if the
program it executes is capable of performing those functions.
That the true functional requirements of the limitation are
nested within the generic function of executing a program does
not change this fact; though the computer itself may execute a
computer program, it may not execute that computer program
without the algorithms.172

Supreme Court’s Complicity in Federal Circuit Formalism, 20 SANTA CLARA COMPUTER
& HIGH TECH. L.J. 1, 1–2 (2003); Lucas S. Osborn, Instrumentalism at the Federal
Circuit, 56 ST. LOUIS U. L.J. 419, 425–26 (2012); Arti K. Rai, Engaging Facts and
Policy: A Multi-Institutional Approach to Patent System Reform, 103 COLUM. L. REV.
1035, 1102–22 (2003); John R. Thomas, Formalism at the Federal Circuit, 52 AM. U. L.
REV. 771 (2003). For a more favorable view of the Federal Circuit’s formalism, see Peter
Lee, Patent Law and the Two Cultures, 120 YALE L.J. 2, 27–29 (2010).
 169. See, e.g., Function Media, LLC v. Google Inc., 708 F.3d 1310, 1318–19
(Fed. Cir. 2013) (use of flowcharts not sufficient because they just further described
function; they did not explain what software actually performed that function); Ergo
Licensing, LLC v. CareFusion 303, Inc., 673 F.3d 1361, 1364 (Fed. Cir. 2012); HTC
Corp. v. IPCom GmbH & Co., KG, 667 F.3d 1270, 1280, 1282–83 (Fed. Cir. 2012); In re
Aoyama, 656 F.3d 1293, 1294, 1297–98 (Fed. Cir. 2011); see also Noah Sys., Inc. v.
Intuit Inc., 675 F.3d 1302, 1318–19 (Fed. Cir. 2012) (stating that where a
means-plus-function claim element claims two functions, the specification must disclose
algorithms implementing both functions); Aristocrat Techs. Austl. PTY Ltd. v. Int’l Game
Tech., 521 F.3d 1328, 1337–38 (Fed. Cir. 2008). Cf. Typhoon Touch Techs., Inc. v. Dell,
Inc., 659 F.3d 1376, 1384–86 (Fed. Cir. 2011) (concluding that an algorithm necessary to
serve as structure of a means-plus-function software claim element need not be detailed
or written in the form of computer code). HTC is particularly notable because the court
went out of its way to indicate that the absence of an algorithm was a problem even
though the issue had not been raised by the parties and was accordingly waived. HTC,
667 F.3d at 1282.
 170. See, e.g., Dealertrack, Inc. v. Huber, 674 F.3d 1315, 1333–34 (Fed. Cir.
2012).
 171. Id.
 172. Id. at 1329.

946 WISCONSIN LAW REVIEW

This is exactly right. But take exactly the same functional claim
language, and replace individual “means for doing x” steps with a
generic reference to a general-purpose computer “programmed to”
achieve those same steps, as in the claims detailed in Part II, and the
Federal Circuit no longer treats the claim as a means-plus-function claim
and accordingly puts no limit on the functional nature of the claim.173
Indeed, parties no longer even think about whether there is structure in
those claims. In short, current cases treat “a computer” (or equivalents
like “a processor connected to a memory”) as a structural definition of
the software invention, except where the patentee happened to make the
mistake of using the word “means” to refer to that computer.174

This distinction ignores the realities of modern computer
technology. Software patents by definition require implementation in a
computer. Indeed, the Federal Circuit has recognized in other contexts
that a computer is implicit in a software patent even if it appears nowhere
in the claims.175 Adding a term that is both necessary for any possible
implementation of the function and so general as to impose no limit on
the scope of the claim does not fit with the purpose of Section 112(f).
The goal of Section 112(f) was to limit functional claiming by tying it to
particular structure disclosed in the specification. If patentees can simply
add “structure” in the form of inherently necessary technology, the
purpose of that section is lost. It is as though a patentee had added the
phrase “man-made” to a patent claiming “means for flying” and pointed
to that as a structural limitation sufficient to take his invention outside
the scope of functional claiming.

The “structure, material or acts” that must support a claim in
functional language must be more than mere window-dressing. The
intent of this statute was to allow functional claiming only when it was
limited to particular implementations of that function, not when it
encompassed all feasible ways of achieving the goal.176

 173. See supra notes 92–95 and accompanying text.
 174. Id.
 175. In re Dossel, 115 F.3d 942, 946–47 (Fed. Cir. 1997) (written description);
Robotic Vision Sys., Inc. v. View Eng’g, Inc., 112 F.3d 1163, 1166 (Fed. Cir. 1997) (best
mode).
 176 See supra Part I (discussing the enactment of Section 112(f)); cf. Regents of
the Univ. of Calif. v. Eli Lilly & Co., 119 F.3d 1559, 1568 (Fed. Cir. 1997) (rejecting
patent claim because “[i]t is only a definition of a useful result rather than a definition of
what achieves that result.”); Ariad Pharms. Inc. v. Eli Lilly & Co., 598 F.3d 1336, 1353
(Fed. Cir. 2010) (en banc) (“Such claims merely recite a description of the problem to be
solved while claiming all solutions to it”). For a broader suggestion to apply Section
112(f) to all patent claims, see Patrick G. Burns, A Simpler Approach to Claim
Construction, 77 PAT., TRADEMARK, & COPYRIGHT J. (BNA) 717 (2009).

2013:905 Functional Claiming 947

Fortunately, the solution to the problem is correspondingly simple:
we must take seriously the dictate of Section 112(f).177 If we limit patent
claims that purport to cover functions to the actual structure, material, or
acts the patentee built or described, the result will be that software
patents will cover, not every possible way of implementing a goal, but
the way the patentee actually implemented the goal “and equivalents
thereof.” And in computer software, the “structure” or “acts” that
perform the function are not simply “a computer” or “a client-server
system” but “a computer programmed in a particular way.” That is, the
structure of a software patent must involve software, not just the
hardware substrate on which all software runs. Specifically, as recent
Federal Circuit indefiniteness cases have shown, patentees will have to
disclose the algorithms they use to achieve particular ends, and the patent
will be limited to those algorithms and equivalents thereof.178 This will
leave room for later entrants to design around the patent and develop
different algorithms to achieve the same result.179

We don’t need to change the statute to achieve this result. We don’t
even need to overrule existing cases. We just need to take seriously law
that is on the books but doesn’t seem to get applied in practice. The
Federal Circuit or the Supreme Court could, with one fell swoop, do

 177. The Board of Patent Appeals and Interferences took a step in this direction
in Ex Parte Rodriguez, No. 2008-693 (B.P.A.I. Oct. 1, 2009). There, the Board defined as
means-plus-function claim elements the phrases: “system configuration generator
configured to generate,” “system builder configured to build,” and “simulation
verification environment configured to verify.” Id. at 20. The Board found that these
terms had no common structural meaning and so they were properly understood as
means-plus-function elements. These claim elements referred to computer technology,
though they didn’t use any terms that expressly connoted computer hardware. Id. at 23. It
remains to be seen whether the Board or the Federal Circuit will apply this principle to
other recitations of generic computer technology.
 178. See supra note 169 and accompanying text.
 179. Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 36 (1997)
(contrasting “the intentional copyist making minor changes to lower the risk of legal
action” with “the incremental innovator designing around the claims, yet seeking to
capture as much as is permissible of the patented advance”); see also Slimfold Mfg. Co. v.
Kinkead Indus., 932 F.2d 1453, 1457 (Fed. Cir. 1991) (“Designing around patents is, in
fact, one of the ways in which the patent system works to the advantage of the public in
promoting progress in the useful arts, its constitutional purpose.”); State Indus. v. A.O.
Smith Corp., 751 F.2d 1226, 1236 (Fed. Cir. 1985) (“One of the benefits of a patent
system is its so-called ‘negative incentive’ to ‘design around’ a competitor’s products,
even when they are patented, thus bringing a steady flow of innovations to the
marketplace.”); Matthew J. Conigliaro et al., Foreseeability in Patent Law, 16 BERKELEY
TECH. L.J. 1045, 1048 (2001); Craig Allen Nard, A Theory of Claim Interpretation, 14
HARV. J.L. & TECH. 1, 40–41 (2000) (“The practice of designing-around extant patents
creates viable substitutes and advances, resulting in competition among patented
technologies. The public clearly benefits from such activity.”).

948 WISCONSIN LAW REVIEW

away with most of the problem of over-claiming in software patents—
and with it, most of the problems with software patents. All it needs to do
is to take the statute at face value and limit functional claims to the
particular way the patentee implemented that function. In the software
world, the way an inventor implements a function is not with “a
computer” or “a processor” but with a particular computer program. The
patent claim should accordingly be limited to that particular computer
program and ones that work in the same way to achieve the same
result.180

The fact that we don’t need to change the statute to achieve this
result has an important benefit. While changes to statutes generally
operate prospectively, new court interpretations of existing statutes are
normally retroactive.181 The idea is that the law hasn’t changed; we
simply understand it better. Retroactivity is key to solving the software
patent thicket; it wouldn’t do much good to say that patents issued four
years from now will be narrower if we are stuck with hundreds of
thousands of overbroad patents in force for the next two decades.182 If the
courts refused to act, Congress might be able to prompt action with a
modest change to Section 112(f), perhaps by adding a sentence that
reads, “If the function of an element is performed by software, recital of
the medium on which software is stored or performed, such as computer
hardware, is not sufficient to avoid application of this subsection.” But I
emphasize that this is a problem courts have created, and that courts
should be the ones who solve it. And any Congressional action should
make clear that Congress does not intend to change the law, but rather to

 180. See BURK & LEMLEY, PATENT CRISIS, supra note 124, chs. 6, 11 (arguing
that software patents should be narrow to allow for cumulative innovation); Randall M.
Whitmeyer, Comment, A Plea for Due Processes: Defining the Proper Scope of Patent
Protection for Computer Software, 85 NW. U. L. REV. 1103, 1106 (1991) (“[I]n the
computer software context only narrow algorithms, as the term is understood by
computer scientists, should be patentable.”).
 181. See, e.g., David L. Schwartz, Back from the Future: Retroactivity at the
Federal Circuit, 89 IND. L.J. (forthcoming 2014) (manuscript at 43–45), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1945554 (discussing the
circumstances under which patent decisions should be retroactive). In a larger sense, the
prospective-retroactive distinction is illusory; all private actors necessarily make
assessments about how the law might change in the future. See Michael J. Graetz, Legal
Transitions: The Case of Retroactivity in Income Tax Revision, 126 U. PA. L. REV. 47,
49–50 (1977); Louis Kaplow, An Economic Analysis of Legal Transitions, 99 HARV. L.
REV. 509, 511–12 (1986).
 182. Some have argued that any effort to narrow patent rights is a taking under
the Fifth Amendment. See, e.g., J. Nicholas Bunch, Takings, Judicial Takings,
and Patent Law, 83 TEX. L. REV. 1747, 1762 (2005). Even if that were true, were the law
changed to eliminate patent rights, it surely is not true of a court decision that actually
applies a statute that has been on the books for sixty years.

2013:905 Functional Claiming 949

push courts to apply existing law as written so that the change should
apply retroactively.

B. Objections

In this Section, I consider two sets of objections, one rooted in
asking whether such a change will really accomplish very much, and the
other asking whether it will unfairly disadvantage inventors of software
patents.

1. WILL IT WORK?

Some might question whether taking Section 112(f) seriously as a
solution to the problem of software patents will limit software patents
sufficiently. There are two components to this worry. First, courts might
treat software claims implemented in general-purpose computers as
means-plus-function claims but still not limit those claims to an
algorithm or other detailed invention structure. The Federal Circuit
record on this point is mixed. For software claims the court recognizes as
invoking Section 112(f), most decisions have required that the patent
specification disclose an algorithm for performing the specified
function.183 But on occasion the Federal Circuit has been more lenient to
patentees, permitting them to satisfy the “particular and definite
structure” with fairly general language rather than a specific
implementation.184 That is particularly true when hardware is at stake.
Indeed, in one recent case the court went out of its way to find that the
phrase “system memory means” was a means-plus-function claim
element because it lacked a “specific and definite structure,” only to find
that the structure disclosed in the patent that corresponded to this claim
was . . . wait for it . . . “a system memory.”185 An interpretation of

 183. Function Media, LLC v. Google Inc., 708 F.3d 1310, 1318–19 (Fed. Cir.
2013); Ergo Licensing, LLC v. CareFusion, Inc., 673 F.3d 1361, 1364 (Fed. Cir. 2012);
HTC Corp. v. IPCom GmbH & Co., KG, 667 F.3d 1270, 1280, 1282–83 (Fed. Cir. 2012);
In re Aoyama, 656 F.3d 1293, 1297–98 (Fed. Cir. 2011); Aristocrat Techs. Austl. PTY
Ltd. v. Int’l Game Tech., 521 F.3d 1328, 1333, 1337–38 (Fed. Cir. 2008); see also Noah
Sys., Inc. v. Intuit Inc., 675 F.3d 1302, 1318–19 (Fed. Cir. 2012) (stating that where a
means-plus-function claim element claims two functions, the specification must disclose
algorithms implementing both functions).
 184. See Typhoon Touch Techs., Inc. v. Dell, Inc., 659 F.3d 1376, 1385–86 (Fed.
Cir. 2011) (finding that an algorithm necessary to serve as structure of a
means-plus-function software claim element need not be detailed or written in the form
of computer code); In re Katz Interactive Call Processing Patent Litig., 639 F.3d 1303,
1316 (Fed. Cir. 2011).
 185. Chi. Bd. Options Exch., Inc. v. Int’l Sec. Exch., LLC, 677 F.3d 1361,

950 WISCONSIN LAW REVIEW

Section 112(f) that does nothing more than replace the broad functional
language of the claim with identical broad functional language from the
specification renders that statute worthless.186

Fortunately, the majority of decisions from the Federal Circuit have
not taken such a feckless approach. While the court does not necessarily
require the disclosure of actual computer code to support the functional
steps of a software claim,187 it has tended to limit those claims to
particular actual implementations of the idea, not to generic recitations of
the functions the program performs.188 And the court has gone out of its
way to reject efforts by patentees to support functional claim language
with specification language that just describes the function in more
detail.189

The majority’s narrower approach is consistent with the Supreme
Court’s approach to the question in Halliburton. Contrast the breadth of
treating “system memory” as the relevant structure with the holding in
Halliburton. The Court there wanted evidence of how the device that
performed the function was actually constructed and how it connected
with the rest of the invention:

 Walker, in some of his claims, for example, claims 2 and
3, does describe the tuned acoustical pipe as an integral part of
his invention, showing its structure, its working arrangement in
the alleged new combination, and the manner of its connection
with the other parts. But no one of the claims on which this
judgment rests has even suggested the physical structure of the
acoustical resonator. No one of these claims describes the
physical relation of the Walker addition to the old Lehr and
Wyatt machine. No one of these claims describes the manner in

1366–69 (Fed. Cir. 2012). But see Ergo Licensing, 673 F.3d at 1363–64 (“The recitation
of ‘control device’ provides no more structure than the term ‘control means’ itself, rather
it merely replaces the word ‘means’ with the generic term ‘device.’”).
 186. To be clear, a “system memory” may have a sufficiently clear meaning—
and be sufficiently peripheral to the claim—that there is no real value to limiting the
patentee to particular types of memories. But it is important not to apply a similar generic
approach to the novel algorithmic steps of the patent. See generally Mark A. Lemley,
Point of Novelty, 105 NW. U. L. REV. 1253 (2011) [hereinafter Lemley, Novelty].
 187. Typhoon Touch, 659 F.3d at 1385–86.
 188. See supra notes 183–85 and accompanying text (collecting cases).
 189. ePlus, Inc. v. Lawson Software, Inc., 700 F.3d 509, 518–20 (Fed. Cir.
2012). See also Signtech USA, Ltd. v. Vutek, Inc., 174 F.3d 1352, 1356 (Fed. Cir. 1999)
(“Although patentees are not necessarily limited to their preferred embodiment, . . .
interpretation of a means-plus-function element requires this court to consult the structure
disclosed in the specification, which often, as in this case, describes little more than the
preferred embodiment.” (citations omitted).

2013:905 Functional Claiming 951

which the Walker addition will operate together with the old
Lehr and Wyatt machine so as to make the ‘new’ unitary
apparatus perform its designed function. Thus the claims failed
adequately to depict the structure, mode, and operation of the
parts in combination.190

For Section 112(f) to serve as a real limit on functional claiming of
software, courts must resist the temptation to permit broad generic
recitations of structure in a means-plus-function claim, at least at the
point of novelty, and return instead to the animating idea behind the
statutory limitation on functional claiming.

The second worry stems from the “and equivalents thereof”
language of Section 112(f). Because means-plus-function claim elements
are not limited strictly to the structure disclosed in the specification but
can encompass equivalent structures, patentees will have an incentive to
argue that all forms of computer implementation of an idea are
“equivalent” and so are covered within the literal bounds of the patent
claim. Obviously they are equivalent in function; the functions must be
identical for literal infringement under Section 112(f). So the question is
whether patentees can persuade courts to equate different algorithmic
approaches to solving the problem. If patentees can recapture all possible
means of performing the function in this way, they will be able to avoid
any limitation imposed by the structure and effectively own a functional
claim.

I am less concerned that equivalents will allow such recapture for
two reasons. First, there is an important difference between equivalents
under the doctrine of equivalents and equivalents under Section 112(f).
Section 112(f) equivalents do not apply to later-developed structures, but
only to equivalents known at the time the patent issued.191 Because
software changes so quickly, most litigated software patents today are

 190. Halliburton Oil Well Cementing Co v. Walker, 329 U.S. 1, 8 (1946). In the
1952 Act, Congress did not expressly overrule Halliburton, but rather said it was
superseded by the new rules in Section 112(f). See Warner-Jenkinson Co. v. Hilton Davis
Chem. Co., 520 U.S. 17, 27–28 (1997).
 191. See, e.g., Al-Site Corp. v. VSI Int’l, Inc., 174 F.3d 1308 (Fed. Cir. 1999)
(“An equivalent structure or act under § 112 cannot embrace technology developed after
the issuance of the patent because the literal meaning of a claim is fixed upon its
issuance.”) (emphasis added); Chiuminatta Concrete Concepts, Inc. v. Cardinal Indus.,
Inc., 145 F.3d 1303, 1310 (Fed. Cir. 1998). For a discussion of this timing question, see
Mark A. Lemley, The Changing Meaning of Patent Claim Terms, 104 MICH. L. REV. 101,
107–08 (2005) [hereinafter Lemley, Changing Meaning]. By contrast, the doctrine of
equivalents can encompass equivalent functions as opposed to structures. See WMS
Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339, 1353 (Fed. Cir. 1999).

952 WISCONSIN LAW REVIEW

asserted against technologies that did not exist at the time of patenting.192
This is especially true of troll patents, which tend to be asserted in the
last few years of patent life.193 Once those patents are understood to
invoke Section 112(f), their literal scope will be limited to the technology
the patentee actually designed and equivalents known at the time the
patent issued.194

It is true that Section 112(f) equivalence is treated as literal
infringement, raising the possibility that there could be an “equivalent to
the equivalent” under the traditional “doctrine of equivalents.”195 But
courts have read the doctrine of equivalents narrowly in the last fifteen
years, to such an extent that the ordinary doctrine of equivalents has
diminished to near the vanishing point.196 While in part that results from
judicial limits on the doctrine of equivalents that do not apply as readily
to Section 112(f) equivalents,197 some important limits, such as the rule
against expanding the patent to cover the prior art, will apply to
means-plus-function claims as well as to the normal doctrine of

 192. See Cohen & Lemley, supra note 100, at 1762.
 193. See Brian J. Love, An Empirical Study of Patent Litigation Timing: Could a
Patent Term Reduction Decimate Trolls without Harming Innovators?, 161 U. PA. L.
REV. 1309, 1336–40 (2013).
 194. That won’t solve the problem entirely, because some patentees will use the
ability to file an unlimited number of continuation applications to delay issuance of a
patent until years after invention. See, e.g., Lemley & Moore, supra note 145, at 79–80.
And for purposes of Section 112(f) it is the day the patent issues, not the day it is filed,
that is relevant for determining the range of equivalents. See Lemley, Changing Meaning,
supra note 191, at 103. An effort by the PTO to put some limits on the scope of
continuations was challenged in court and ultimately withdrawn in 2009. Tafas v.
Kappos, 586 F.3d 1369, 1371 (Fed. Cir. 2009) (en banc).
 195. No, really, that’s the rule. Ain’t patent law grand?
 196. See, e.g., Allison & Lemley, supra note 60; Lee Petherbridge, On the
Decline of the Doctrine of Equivalents, 31 CARDOZO L. REV. 1371 (2010); David L.
Schwartz, Explaining the Demise of the Doctrine of Equivalents, 26 BERKELEY TECH. L.J.
1157 (2011). For debates over whether the demise of the doctrine of equivalents is good
or bad, compare Meurer & Nard, supra note 19, with Doug Lichtman, Substitutes for the
Doctrine of Equivalents: A Response to Meurer and Nard, 93 GEO. L.J. 2013 (2005). For
a discussion specific to software and later-developed technology, see Cohen & Lemley,
supra note 100, at 53–56.
 197. For instance, the doctrines of prosecution history estoppel and dedication to
the public domain are based on changes in the scope of the patent claim during
prosecution. See, e.g., Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S.
722, 733–35 (2002); Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17,
30–34 (1997); Johnson & Johnston Assocs. v. R.E. Serv. Co., 285 F.3d 1046, 1052 (Fed.
Cir. 2002) (en banc) (per curiam). Because the technology disclosed in the specification
doesn’t change, those doctrines generally will not limit Section 112(f) structural
equivalents.

2013:905 Functional Claiming 953

equivalents.198 In any event, the Federal Circuit is not inclined to read
equivalents claims broadly because doing so undermines whatever notice
function claims serve and makes it harder to resolve legal questions
without a jury trial.199 It has avoided applying other doctrines that give
similar flexibility to the doctrine of equivalents, such as the reverse
doctrine of equivalents200 and the pioneer patents rule.201 As a result,

 198. Wilson Sporting Goods Co. v. David Geoffrey & Assocs., 904 F.2d 677,
683–84 (Fed. Cir. 1990). Prosecution history estoppel too will still have some application
to Section 112(f) equivalents because an applicant can estop themselves from claiming
new ground on the basis of arguments to the PTO as well as claim changes. See, e.g.,
Aquatex Indus., Inc. v. Techniche Solutions, 419 F.3d 1374, 1382 (Fed. Cir. 2005) (“The
doctrine of prosecution history estoppel limits the doctrine of equivalents when an
applicant . . . clearly and unmistakably surrenders subject matter by arguments made to
an examiner.” (quoting Salazar v. Procter & Gamble Co., 414 F.3d 1342, 1344 (Fed. Cir.
2005)); Pharmacia & Upjohn Co. v. Mylan Pharm., Inc., 170 F.3d 1373, 1376–77 (Fed.
Cir. 1999).
 199. See, e.g., Sage Prods., Inc. v. Devon Indus., Inc., 126 F.3d 1420, 1424–25
(Fed. Cir. 1997). The Federal Circuit has shown a strong preference for rules over
standards in patent law in general. See, e.g., Duffy, supra note 134, at 611; Holbrook,
supra note 168, at 2; Lee, supra note 168, at 46; Craig Allan Nard, Legal Forms and the
Common Law of Patents, 90 B.U. L. REV. 51, 84 (2010); Osborn, supra note 168, at 421–
22; Thomas, supra note 168, at 792.
 200. The reverse doctrine of equivalents constitutes an optional component of
literal claim analysis, relieving the accused infringer of liability if the accused device,
despite falling within the literal scope of the claims, is so far changed in principle that it
performs a different function in a different way than the equivalent structure in the patent.
The classic statement of reverse equivalents comes from Boyden Power-Brake Co. v.
Westinghouse, 170 U.S. 537, 568 (1898). The doctrine is rarely applied, and the Federal
Circuit in Tate Access Floors, Inc. v. Interface Architectural Res., Inc., 279 F.3d 1357,
1368 (Fed. Cir. 2002), suggested that the doctrine had no continued meaning after the
passage of the 1952 Patent Act. The court also (misleadingly) suggested the Federal
Circuit had never applied the doctrine. Cf. Scripps Clinic & Research Found. v.
Genentech, Inc., 927 F.2d 1565, 1581 (Fed. Cir. 1991) (applying the reverse doctrine of
equivalents). The Federal Circuit has since backed off from this crabbed and ahistorical
reading. See Amgen Inc. v. Hoechst Marion Roussel, 314 F.3d 1313, 1351 (Fed. Cir.
2003).
 201. The pioneer patent rule gave patents broader scope if they were pioneering
inventions. See, e.g., Miller v. Eagle Mfg. Co., 151 U.S. 186, 207 (1894) (“If the
invention is broad or primary in its character, the range of equivalents will be
correspondingly broad, under the liberal construction which the courts give to such
inventions.”); Perkin-Elmer Corp. v. Westinghouse Elec. Corp., 822 F.2d 1528, 1532
(Fed. Cir. 1987) (“A pioneer invention is entitled to a broad range of equivalents.”). The
Wright brothers, for example, won their patent infringement suit against Glenn Curtis in
1914 because they were pioneering inventors, and the court accordingly afforded them
broad protection even against the somewhat different Curtis plane. Wright Co. v.
Herring-Curtis Co., 211 F. 654, 655 (2d Cir. 1914). The Court of Customs and Patent
Appeals, the predecessor to the Federal Circuit, applied the pioneer patent doctrine, see
Autogiro Co. v. United States, 384 F.2d 391, 400 (Ct. Cl. 1967), and the Supreme Court
continues to talk about patent scope under the doctrine of equivalents as a function of
how pioneering the patent is. See Warner-Jenkinson, 530 U.S. at 27 n.4. The pioneer

954 WISCONSIN LAW REVIEW

while the doctrine of equivalents means software patentees may
sometimes get control over an entire function even under Section 112(f),
those cases are likely to be quite rare. On balance, limiting functional
software claims to the algorithm the patentee actually developed and
equivalents thereof will go a long way towards narrowing the claimed
scope of those patents, assuming they actually disclose such an
algorithm. And if they don’t, they are (and should be) invalid under
Aristocrat Technologies Australia PTY Ltd. v. International Game
Technology.202

2. DO INVENTORS DESERVE TO OWN FUNCTIONS?

A second class of objections to taking Section 112(f) seriously is in
some sense the opposite of the first. This objection assumes that treating
software patents as means-plus-function claims will in fact work, but it
worries that doing so will unfairly disadvantage patentees. There are
several species of this argument.

a. Hardware Doesn’t Matter

Software, this argument goes, is all about the implementation of a
function across machines. It shouldn’t matter whether you want to run a
spreadsheet on a PC, a Mac, an Android phone, or an old IBM
mainframe. Each one might require a different computer implementation,
but the genius of software is that those implementations are functionally
equivalent; the machine is irrelevant. Thus, advocates of broad software
patenting may argue that limiting them only to one particular algorithm
or implementation in one particular machine unfairly restricts the scope

patent rule has not been invoked by the Federal Circuit in recent years, leading some to
consider it moribund. Compare Augustine Med., Inc. v. Gaymar Indus., Inc., 181 F.3d
1291, 1301 (Fed. Cir. 1999) (stating that “pioneering inventions deserve a broader range
of equivalents”), with Sun Studs, Inc. v. ATA Equip. Leasing, Inc., 872 F.2d 978, 987
(Fed. Cir. 1989) (holding that “the ‘pioneer’ is not a separate class of invention”),
overruled on other grounds, A.C. Aukerman Co. v. R.L. Chaides Constr. Co., 960 F.2d
1020 (Fed. Cir. 1992). The Federal Circuit did endorse the pioneering patent doctrine in
an unpublished opinion in 2003. See Molten Metal Equip. Innovations, Inc. v. Metallics
Sys. Co., 56 F. App’x 475, 480 (Fed. Cir. 2003) (stating that pioneering invention claims
“are entitled to a broad or liberal range of equivalents”). For discussion of the pioneer
patent doctrine, see, for example, Meurer & Nard, supra note 19, at 2002–05 (endorsing
broader use of the doctrine) and Thomas, supra note 19, at 37 (“Courts construe pioneer
patent claims . . . to encompass a broader range of so-called ‘equivalents’ during an
infringement determination.”). See also Love, supra note 19 (arguing for its abolition).
 202. 521 F.3d 1328, 1336–38 (Fed. Cir. 2008) (holding that an algorithm must
be disclosed in order for a patent to be upheld).

2013:905 Functional Claiming 955

of their patent, allowing other companies to avoid the patent while
implementing an equivalent technology.203

There is something to this concern. In particular, it makes little
sense to say that the implementation of the same algorithm in a different
computer should be outside the scope of the patent.204 As I suggested
above, focusing on the hardware misses the point when the invention is
one that is implemented in software. And patent claims are always cast at
some level of abstraction away from the precise machine the patentee
built so that they cover ideas rather than particular machines.205 But when
the patent seeks to cover not the implementation of a specific algorithm
across different machines, but the implementation of different algorithms
that happen to achieve the same end, that patent is too broad. It does not
follow that because two algorithms solve the same problem that they are
equivalent.206 Thus, I part ways with those who argue that any invention
in software is inherently an invention only at the level of the function it
performs.207 A moment’s reflection on the history of software will reveal
the flaw in that assumption. Google is a better search engine than its
predecessors not because it performs a different function, but because it
performs the same function in a different and better way. It is the way,
not the function, that patent law is supposed to protect.

It is true that the different algorithm may compete with the patented
one, preventing the patentee from excluding competition and raising
prices. But so what? The vast majority of patents in all fields face some
competition from other means of achieving the same end, and as a result

 203. See, e.g., Robert R. Sachs, Comments in Response to the Patent and
Trademark Office’s Proposed Examination Guidelines for Computer-Implemented
Inventions, 2 MICH. TELECOMM. & TECH. L. REV. 103, 107 (1995–96); Note, supra note
61, at 1465–66 (“[I]t would make no sense for software patentees to specify secondary
characteristics like a programming language, operating system, or platform in their
patents. These have nothing to do with the invention.”).
 204. Note, supra note 61, at 1471 (arguing that “software patents are broad
without being overclaimed”). For this reason, I have argued elsewhere that the “machine
or transformation” test for patentable subject matter, which would limit software patents
to those “tied to a particular machine,” doesn’t make sense. Lemley et al., Life after
Bilski, supra note 132, at 1346–47.
 205. See Dan L. Burk & Mark A. Lemley, Quantum Patent Mechanics, 9 LEWIS
& CLARK L. REV. 29, 32–40 (2005) (noting the “levels of abstraction” problem in
interpreting patent claims) [hereinafter Burk & Lemley, Quantum]; Tun-Jen Chiang, The
Levels of Abstraction Problem in Patent Law, 105 NW. U. L. REV. 1097 (2011).
 206. For a technical discussion in the field of software, see Andrew Chin, On
Abstraction and Equivalence in Software Patent Doctrine: A Response to Bessen, Meurer
and Klemens, 16 J. INTELL. PROP. L. 197 (2009).
 207. Note, supra note 61, at 1474.

956 WISCONSIN LAW REVIEW

most patents don’t confer market power.208 If I invent a particular blade
shape for a lawn mower, patent law gives me the right to prevent
competitors from making a blade in that shape.209 It doesn’t give me a
right to control lawn mowers generally; anyone who makes a differently
shaped blade can sell it without infringing even if it performs the same
function and does it just as well as the patented invention. Similarly, if I
develop a cholesterol-reducing drug, I don’t get to claim “atoms
configured in a way that reduces human cholesterol.” My patent is
limited to the drug I actually make and others like it. Even if I am the
first to develop a cholesterol-lowering drug, the fact that I can’t claim the
function itself leaves open the possibility that others will later develop
different drugs that achieve the same end.210

That doesn’t mean that the inventor’s contribution should be limited
to the precise code she wrote; the invention may well make a
contribution at a higher level of abstraction.211 And if it does, the patent
can properly capture a group of related implementations of that same
idea. But if “the idea” is “solve this problem,” we should be very

 208. See, e.g., Illinois Tool Works Inc. v. Independent Ink, Inc., 547 U.S. 28, 31
(2006) (rejecting prior presumption that patents necessarily confer market power). For
criticism of the equation of patent and market power, see, for example, HERBERT
HOVENKAMP ET AL., 1 IP AND ANTITRUST: AN ANALYSIS OF ANTITRUST PRINCIPLES
APPLIED TO INTELLECTUAL PROPERTY LAW § 4.2 (2d ed. 2010). Cf. Louis Kaplow, Why
(Ever) Define Markets?, 124 HARV. L. REV. 437, 500–01 (2010); Lemley & McKenna,
supra note 25, at 2091 (pointing out that a surprising number of IP rights do in fact confer
power over price).
 209. This leaves open the question of the level of generality at which the
technology is protected. A patent claim that was strictly limited to exactly the device the
patentee built would be too easy to evade. So patentees are entitled to prevent others from
implementing the concept of the invention even if the details differ. That is why patent
claims cover a genus of implementations, not just a particular species. See, e.g., Burk &
Lemley, Fence Posts, supra note 15; Lefstin, supra note 22, at 1168–69. But the level of
generality is never “the market”—except, that is, in software. Cf. Abramowicz & Duffy,
supra note 25, at 340 (arguing for legal protection for market information).
 210. As Justice Frankfurter wrote in 1948, concurring in the rejection of
functional claims to a collection of bacteria,

 The consequences of such a conclusion call for its rejection. Its
acceptance would require, for instance in the field of alloys, that if one
discovered a particular mixture of metals, which when alloyed had some
particular desirable properties, he could patent not merely this particular
mixture but the idea of alloying metals for this purpose . . . In patenting an
alloy, I assume that both the qualities of the product and its specific
composition would need to be specified.

Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 134 (1948) (Frankfurter, J.,
concurring).
 211. On levels of abstraction in patent law, see Burk & Lemley, Quantum, supra
note 205, at 32–40.

2013:905 Functional Claiming 957

cautious about giving a patent at that high a level of abstraction. Doing
so may give the patentee control over a market not because their product
is superior to others in that market, but by definition—the market is the
thing the patent itself claims.212 And in software patents, all too often that
is precisely what we have been patenting.

Patents, then, are not designed to control markets, though
sometimes they do. Rather, they are designed to encourage the
development of new inventions and differentiated products within that
market by discouraging copying of the patentee’s technology.213 Those
new inventions will often be imperfect substitutes, so patents will often
confer some power over price.214 But it has never been the purpose of
patent law to give the patentee control over a market as opposed to a
technology. Indeed, the economic evidence is pretty good that
competition is itself a spur to new innovation.215 The existence of a

 212. See Collins, supra note 90, at 17–23 (explaining in detail the harms
associated with claiming markets).
 213. See generally Yoo, Differentiation, supra note 25.
 214. Lemley & McKenna, supra note 25, at 2091.
 215. See, e.g., Juan A. Correa & Carmine Ornaghi, Competition & Innovation:
New Evidence from US Patent and Productivity Data (Oct. 21, 2011) (working paper),
available at http://ssrn.com/abstract=1947357 (finding that, across industries, innovation
is faster in more competitive markets). For a sense of the literature on this long-running
economic debate, see Kenneth J. Arrow, Economic Welfare and the Allocation of
Resources for Invention, in NAT’L BUREAU ECON. RESEARCH, THE RATE AND DIRECTION
OF INVENTIVE ACTIVITY: ECONOMIC AND SOCIAL FACTORS 609, 620 (1962) (concluding
that “preinvention monopoly power acts as a strong disincentive to further
innovation”). See also MORTON I. KAMIEN & NANCY L. SCHWARTZ, MARKET STRUCTURE
AND INNOVATION 16 (1982) (discussing various theories of the effects of economic
structures on the rate and form of innovation); F.M. SHERER & DAVID ROSS, INDUSTRIAL
MARKET STRUCTURE AND ECONOMIC PERFORMANCE 660 (3d ed. 1990) (criticizing
Schumpeter’s “less cautious” followers for advocating monopoly to promote innovation).
In the specific context of IP, the canonical argument from both theory and empirical
evidence is Robert P. Merges & Richard R. Nelson, On the Complex Economics of Patent
Scope, 90 COLUM. L. REV. 839 (1990). See also Kenneth W. Dam, The Economic
Underpinnings of Patent Law, 23 J. LEGAL STUD. 247, 252 (1994) (noting that in the
computer industry, for example, companies coordinate improvements by broad
cross-licensing because of “the pace of research and development and the market
interdependencies between inventions”). For discussions of particular industries in which
competition appears to spur innovation, see, for example, Arti Kaur Rai, Evolving
Scientific Norms and Intellectual Property Rights: A Reply to Kieff, 95 NW. U. L. REV.
707, 709–10 (2001) (biotechnology); Mark A. Lemley & Lawrence Lessig, The End of
End-to-End: Preserving the Architecture of the Internet in the Broadband Era, 48 UCLA
L. REV. 925, 960–62 (2001) (the internet); Howard A. Shelanski, Competition and
Deployment of New Technology in U.S. Telecommunications, 2000 U. CHI. LEGAL F. 85,
85 (telecommunications).

958 WISCONSIN LAW REVIEW

patent on one technology might spur design-arounds that lead to new
inventions that compete (imperfectly) with the patented one.216

b. Point of Novelty

A different argument is that we shouldn’t care if the standard,
non-inventive elements of the invention known in the prior art are
described in functional terms. If the novelty in an invention lies in the
encryption algorithm used, it shouldn’t matter that the processor on
which the algorithm runs, or the database in which the keys are stored,
are described in functional terms because the value of the invention is the
same regardless of which processor or database the user employs.

I agree with this concern; I have complained for years that we focus
too much attention on the often-trivial language of the patent claims and
not enough attention on the actual novel piece of the patentee’s
invention.217 But even in the current regime, with its hyper-technical
focus on the language of the claims, Section 112(f) can accommodate
this concern. Standard computing elements are precisely the sort of
things that ought to be written in means-plus-function language. The fact
that it doesn’t matter what database an inventor uses in his encryption
program—that for his purposes they are all equivalent—will mean that
the claim elements not located at the point of novelty will be entitled to
broad construction.218 It is precisely at the point of novelty that the

 216. On the economic benefits of design-arounds, see, for example,
Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 36 (1997) (contrasting
“the intentional copyist making minor changes to lower the risk of legal action” with “the
incremental innovator designing around the claims, yet seeking to capture as much as is
permissible of the patented advance.”); see also Slimfold Mfg. Co. v. Kinkead Indus., Inc.,
932 F.2d 1453, 1457 (Fed. Cir. 1991) (“Designing around patents is, in fact, one of the
ways in which the patent system works to the advantage of the public in promoting
progress in the useful arts, its constitutional purpose.”); State Indus., Inc. v. A.O. Smith
Corp., 751 F.2d 1226, 1236 (Fed. Cir. 1985) (“One of the benefits of a patent system is
its so-called ‘negative incentive’ to ‘design around’ a competitor’s products, even when
they are patented, thus bringing a steady flow of innovations to the marketplace.”); Nard,
supra note 179, at 40–41 (“The practice of designing-around extant patents creates viable
substitutes and advances, resulting in competition among patented technologies. The
public clearly benefits from such activity.”)
 217. See Burk & Lemley, Fence Posts, supra note 15; Lemley, Novelty, supra
note 186.
 218. See, e.g., IMS Tech., Inc. v. Haas Automation, Inc., 206 F.3d 1422, 1436
(Fed. Cir. 2000) (a claim element of little importance to the invention—not at the point of
novelty—is entitled to a broader range of equivalents). In a once-common form of claim
called a “Jepson claim,” patentees would identify in the preamble the existing technology
and then identify their improvement in the body of the claim. See Ex parte Jepson, 1917
Dec. Comm’r Pat. 62, 67–68. This had the benefit of highlighting what was actually new
about the patentee’s invention. In a Jepson claim, the distinction could be quite clear:

2013:905 Functional Claiming 959

patentee should be forbidden from substituting broad functional language
for an actual implementation of the invention. I should be able to include
“an analog-to-digital converter” in my claim if ADCs are well known in
the art and not the focus of my invention, but if I am the first person to
have invented a way of converting data from analog to digital format, I
shouldn’t be allowed simply to claim “an analog-to-digital converter”
without any limitation as to how the invention works. The same is true in
software.219

c. Software Inherently Functions

A broader objection is that software ought to be different. The most
common variant of this claim is that software is inherently functional.
Thus, Kevin Collins argues that inventions in the software arts are pure
functionality: that they can only be defined by their functional properties,
as their physical, structural properties have no relevance to the definition
of what an inventor has invented.220 Collins may mean only that
hardware implementations don’t matter; there, I agree. But I think he
intends something deeper—that an algorithm, at least itself defined
sufficiently broadly, is a series of steps, and those steps are themselves
best understood in functional terms.221 Kip Werking goes further, arguing
that “the ultimate problem for the algorithm requirement [is that]
algorithms are composed of functions.”222 At a low enough level, that is
clearly untrue. Software “functions” because it causes a series of gates in
a computer chip to open and close in a particular sequence. At that level,

functional description is permissible in the preamble, because that’s not what the patentee
invented, but would not be permissible in the identified improvement. Unfortunately,
Jepson claiming is on the decline. While Jepson claims represented 15% of all claims
thirty years ago, they are less than 1% today. Aaron R. Feigelson, Endangered Species:
The Jepson Claim, 12:01 TUESDAY, http://www.1201tuesday.com/1201_tuesday/2009/06/
jepson.html (last updated June 4, 2009, 1:56 PM).
 219. Thus, the Federal Circuit has held that a patentee need not disclose a
particular algorithm “if the selection of the algorithm or group of algorithms needed to
perform the function in question would be readily apparent to a person of skill in the art.”
Aristocrat Techs. Austl. Pty Ltd v. Multimedia Games, Inc., 266 F. App’x. 942, 947 (Fed.
Cir. 2008).
 220. Collins, supra note 90, at 4.
 221. Kip Werking makes this argument. Kip Werking, The Illogic of the
Algorithm Requirement for Software Patent Claims, IPWATCHDOG (Oct. 12, 2012, 7:20
AM) http://www.ipwatchdog.com/2012/10/12/the-illogic-of-the-algorithm-requirement-
for-software-patent-claims/id=28635/.
 222. Id. Cf. Andrew Chin, Alappat Redux: Support for Functional Language in
Software Patent Claims (UNC Legal Studies Research Paper No. 2272016, 2013),
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2272016 (arguing that
“algorithm” is “too slippery” a concept to serve as the basis for means-plus-function
patenting and proposing a philosophical inquiry into single causation instead).

960 WISCONSIN LAW REVIEW

software operates a machine by changing its physical orientation. That’s
not functional; that’s a device.223 True, we don’t want to limit the
patentee to the machine-level implementation. But we don’t have to
jump immediately to function as we go up the level of abstraction.
Object code is a representation of that programmed device; at a slightly
higher level of abstraction, so is source code. But they are
representations of an ultimately material thing—the programmed
computer. The same is true as we go further up the level of abstraction. A
dynamic linked list, for example, is a well-understood class of software
objects. We could say it is “functional” because the class is defined in
part by whether different objects perform the same function. But I don’t
think that’s a meaningful way to think about it. It is true at some
philosophical level but need not paralyze us. Indeed, it’s true of any
patent claim that covers a genus of things (which is to say every patent
claim, as Jeff Lefstin reminds us).224 A patent claim to a “chair
comprising a seat, a back, and a plurality of legs” includes concepts—
like the “seat”—that unite otherwise-disparate things by the function
they perform. A jackhammer functions too, but we have no trouble
distinguishing the function it performs from the way in which it performs
that function. The same can be said of software. Saying that a claimed
computer program must use functional language because it speaks of a
dynamic linked list ignores the fact that we understand the term
“dynamic linked list” to refer to a specific class of software objects, just
as we understand the term “seat” (or “resistor” or “analog-to-digital
converter” or “timing circuit”) to refer to a specific class of things.

To the extent Collins and Werking mean that one cannot
conceptually distinguish one software approach from another, I disagree.
There are clearly different ways of solving a problem in software that
map to different, well-understood software objects and subroutines, and
they may have different advantages or disadvantages in terms of ease of
construction, stability, speed, and output. Function is simply not the same
as implementation. And distinguishing between different programs that
perform the same function in a different way is precisely what patent law
is supposed to do. If you implement sorting using a quicksort algorithm,
you are entitled to claim the use of a quicksort algorithm but not the idea
of sorting in any way whatever.

 223. Thus, the Federal Circuit concluded in In re Alappat, 33 F.3d 1526, 1545
(Fed. Cir. 1994) (en banc) that a computer programmed with new software becomes for
all intents and purposes a new machine because the hardware itself is modified by the
program.
 224. Lefstin, supra note 22.

2013:905 Functional Claiming 961

None of that enables us to avoid the hard work of choosing a level
of abstraction. If we aren’t to limit the patent to the exact code the
patentee used (and we shouldn’t), we will need to find an intermediate
level of abstraction in which the program is decomposed into algorithmic
steps that are themselves understood to have particular meanings. That
won’t always be easy; courts and lawyers will doubtless disagree over
what the algorithm in the specification is, just as they disagree about
what structure corresponds to any other functional patent claim
element.225 But that isn’t a reason to ignore the language of the statute.
And, as I have suggested elsewhere, it is a general problem for patent
scope, not a particular problem with software patents.226

d. The Function Is the Invention

Finally, at least some patentees will claim that the programming
didn’t matter and the discovery of a new function was itself the
invention. But while that may be true in some cases (though surely it is
not true of most software inventions), there is good reason to think that in
software in particular, it is competition and not market dominance that
spurs innovation.227 And Part III offers us compelling reasons to believe
that giving such broad functional patents in software causes major
problems for the patent system.228 So even if we thought that, as a matter
of logic, software patents should be different than other kinds of patents,
on balance it seems a mistake to permit broad functional claiming of
software. Software inventors could still claim genuses; they should not
be limited to the precise code they wrote. But the patent must be limited
to the actual technology the patentee developed, defined at an
appropriate level of abstraction, not to the problem it addressed, however
solved. If the objection is that applying Section 112(f) limits patentees to
the technology they actually designed or similar ones, then the answer is:
too bad. Patent law is, after all, designed to benefit society, not just the
patentee.229

 225. For some suggestions of ways to draw these lines, see Edlin, supra note 88.
 226. See Burk & Lemley, Quantum, supra note 205, at 31 (arguing that claims
must be understood at a particular level of abstraction, and the law currently doesn’t
recognize the choices it is making); Tun-Jen Chiang, supra note 205, at 1101–02.
 227. See BURK & LEMLEY, PATENT CRISIS, supra note 124, at ch.5 (arguing that
free competition may best promote Internet innovation and that narrow patents will do so
in cumulative innovation industries like software).
 228. See supra, Part III.
 229. See, e.g., Sears, Roebuck & Co. v. Stiffel Co., 376 U.S. 225, 229–30 (1964)
(“Patents are not given as favors . . . but are meant to encourage invention by rewarding
the inventor”); Lemley, Free Riding, supra note 147, at 1072–73; Ted Sichelman,

962 WISCONSIN LAW REVIEW

3. LIMITING SOFTWARE PATENTS IN ORDER TO SAVE THEM

In fact, it may ultimately be the case that software patentees also
stand to benefit from the application of Section 112(f). In the last four
years, the courts have begun enforcing strict limits on patentable subject
matter in software cases. In Bilski v. Kappos,230 the Supreme Court held
that a business method patent was unpatentable as an abstract idea
because it was not sufficiently tied to a particular real-world
implementation.231 In the wake of that decision, most (though not all)
Federal Circuit decisions to consider the patentability of software have
held that software patents that merely implemented process steps in a
general-purpose computer were unpatentable because the process steps
alone were too abstract, and the presence of a general-purpose computer
was insufficient to limit the claim to a particular real-world
implementation.232 While the law of patentable subject matter is still
unsettled, the current trend is one that would invalidate a wide swath of
software patent claims, particularly functional claims of the type I
consider here—not because they are too broad, or indefinite, but because
they are not the sort of thing that is patentable at all.

Treating these functional software patent claims as
means-plus-function claims may end up saving them from invalidation
under Section 101. If the patent is interpreted as a means-plus-function
claim, it will be limited to the particular software implementation the
patentee actually built or described. Such a narrow, specific claim should
not be an unpatentable “abstract idea.”233 And focusing on the actual

Purging Patent Law of “Private Law” Remedies, 92 TEX. L. REV. (forthcoming 2013),
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1932834.
 230. 130 S. Ct. 3218 (2010).
 231. Id. at 3230–31.
 232. See, e.g., Accenture v. Guidewire, Inc., No. 11-1486 (Fed. Cir. Sept. 5,
2013); CLS Bank v. Alice Corp. Pty., No. 11-1301 (Fed. Cir. May 10, 2013) (en banc)
(per curiam); Fort Props., Inc. v. Am. Master Lease LLC, 671 F.3d 1317, 1323–24 (Fed.
Cir. 2012) (rejecting as unpatentable claims that listed functional steps implemented in a
general-purpose computer); Dealertrack, Inc. v. Huber, 674 F.3d 1315, 1332–33 (Fed.
Cir. 2012); CyberSource Corp. v. Retail Decisions, Inc., 654 F.3d 1366, 1375 (Fed. Cir.
2011); cf. Ultramercial, LLC v. Hulu, LLC, 722 F.3d 1335, 1350 (Fed. Cir. 2013)
(holding that a method of implementing process steps using the Internet was patentable
because it was likely to involve “complex computer programming”). But see Research
Corp. Techs. v. Microsoft Corp., 627 F.3d 859, 867–69 (Fed. Cir. 2010) (holding claim to
method of controlling computer display patentable subject matter). For discussion, see
Pamela Samuelson & Jason Schultz, “Clues” for Determining whether Business and
Service Innovations Are Unpatentable Abstract Ideas, 15 LEWIS & CLARK L. REV. 109
(2011).
 233. My co-authors and I have argued that elsewhere. See Lemley et al., Life
after Bilski, supra note 132.

2013:905 Functional Claiming 963

software invention will move the patentable subject matter law away
from unhelpful tests like the “machine or transformation” test that focus
on the hardware, not the software, in the patent claims.234 Those
narrowed patents are also less likely to be invalid on the basis of prior
art, since it is far more likely that someone has described the same
function before than that they have produced the same algorithm before.
And developing the algorithm itself may well be nonobvious in many
cases.235

Restricting functional claiming, then, may have the unexpected
effect of saving many software patents from invalidation by narrowing
them.236 Opponents of software patents may think that a problem; they
are hoping that the new patentable subject matter cases will invalidate all
software patents. But I think it’s a good thing. There is nothing wrong
with the idea of patenting true inventions in software; the problem lies in
the overclaiming we have permitted in the current system. If we can get
rid of that overclaiming, we can limit software patents to what the
patentees actually invented, encouraging genuine innovation without
promoting patent holdup.

An algorithm requirement is not a panacea.237 Eliminating pure
functional claiming will not automatically teach us how broad a software
patent is or whether a defendant infringes. Patentees will be entitled not
just to the precise algorithm they used, but to sufficiently similar
algorithms, and courts will have to assess that similarity, just as they do
in every other area of patent practice.238 But focusing on what the
patentee and the defendant actually did, rather than the problem they
solved, will cabin the range of debate and limit over-claiming of
software. They will allow patent law to do what it is supposed to do—
determine the right level of abstraction at which the patentee can claim
the invention.

 234. For an argument that this hardware focus is misguided in Section 101
analysis, see Bernard Chao, Finding the Point of Novelty in Software Patents, 28
BERKELEY TECH. L.J. (forthcoming 2013), available at http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2174527.
 235. Fromer, Layers, supra note 141, at 79–82.
 236. If the claims never disclose any algorithm or other implementation, they
will be invalid for indefiniteness under Aristocrat and its progeny. See supra note 202
and accompanying text. But that is as it should be; a patent that doesn’t disclose any
implementation of the idea, but merely the functional goal, doesn’t have at its heart a real
invention.
 237. Collins, supra note 90, at 62–72.
 238. See Burk & Lemley, Quantum, supra note 205; Chiang, supra note 205.

964 WISCONSIN LAW REVIEW

CONCLUSION

It is time to end functional claiming (again). Allowing inventors to
assert ownership over the problem they solved, rather than merely the
way they solved it, is inconsistent with history, with the patent statute,
and with good patent policy. It is responsible in large part for the
untenable situation software patents have left us in. And while software
patent owners may object that they need functional claiming to get
effective protection, that objection is unpersuasive, both because of the
harm functional claiming causes and because functional patent claims are
likely invalid under current law.

A patent should not guarantee insulation from competition. To the
contrary, properly understood, patents spur competition by preventing
direct imitation while leaving open avenues for alternative development.
We have forgotten that lesson in software, to our great cost. Returning to
a world in which inventors own their idea, but not the ideas of others,
will go a long way towards ensuring that patents encourage rather than
retard software innovation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

